Bisher commited on
Commit
030b1f8
1 Parent(s): df82727

Model save

Browse files
Files changed (2) hide show
  1. README.md +112 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ - precision
12
+ - recall
13
+ model-index:
14
+ - name: ViT_ASVspoof_DF
15
+ results:
16
+ - task:
17
+ name: Image Classification
18
+ type: image-classification
19
+ dataset:
20
+ name: imagefolder
21
+ type: imagefolder
22
+ config: default
23
+ split: validation
24
+ args: default
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.8934108527131783
29
+ - name: F1
30
+ type: f1
31
+ value: 0.8431164853649442
32
+ - name: Precision
33
+ type: precision
34
+ value: 0.7981829517456884
35
+ - name: Recall
36
+ type: recall
37
+ value: 0.8934108527131783
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/bishertello-/uncategorized/runs/q4a21cv3)
44
+ # ViT_ASVspoof_DF
45
+
46
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: 1.8822
49
+ - Accuracy: 0.8934
50
+ - F1: 0.8431
51
+ - Precision: 0.7982
52
+ - Recall: 0.8934
53
+ - Test: 1
54
+ - Auc Roc: 0.3976
55
+
56
+ ## Model description
57
+
58
+ More information needed
59
+
60
+ ## Intended uses & limitations
61
+
62
+ More information needed
63
+
64
+ ## Training and evaluation data
65
+
66
+ More information needed
67
+
68
+ ## Training procedure
69
+
70
+ ### Training hyperparameters
71
+
72
+ The following hyperparameters were used during training:
73
+ - learning_rate: 0.0001
74
+ - train_batch_size: 128
75
+ - eval_batch_size: 16
76
+ - seed: 42
77
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
78
+ - lr_scheduler_type: linear
79
+ - lr_scheduler_warmup_steps: 500
80
+ - num_epochs: 2
81
+ - mixed_precision_training: Native AMP
82
+
83
+ ### Training results
84
+
85
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Test | Auc Roc |
86
+ |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:----:|:-------:|
87
+ | 0.3293 | 0.1078 | 50 | 0.5369 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.4810 |
88
+ | 0.1251 | 0.2155 | 100 | 0.7074 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.5209 |
89
+ | 0.0671 | 0.3233 | 150 | 0.8683 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.5390 |
90
+ | 0.0463 | 0.4310 | 200 | 0.8867 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.5820 |
91
+ | 0.0365 | 0.5388 | 250 | 0.9675 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.6129 |
92
+ | 0.0332 | 0.6466 | 300 | 1.1225 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.5544 |
93
+ | 0.0788 | 0.7543 | 350 | 1.1081 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.5776 |
94
+ | 0.0425 | 0.8621 | 400 | 1.4392 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.5835 |
95
+ | 0.0566 | 0.9698 | 450 | 1.8030 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.5043 |
96
+ | 0.0821 | 1.0776 | 500 | 1.8901 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.6352 |
97
+ | 0.1122 | 1.1853 | 550 | 1.8085 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.3735 |
98
+ | 0.0446 | 1.2931 | 600 | 1.9759 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.3383 |
99
+ | 0.0342 | 1.4009 | 650 | 1.9482 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.4254 |
100
+ | 0.028 | 1.5086 | 700 | 1.9181 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.3508 |
101
+ | 0.0195 | 1.6164 | 750 | 1.9146 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.4860 |
102
+ | 0.0107 | 1.7241 | 800 | 1.8752 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.4285 |
103
+ | 0.0092 | 1.8319 | 850 | 1.8792 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.4012 |
104
+ | 0.0 | 1.9397 | 900 | 1.8822 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.3976 |
105
+
106
+
107
+ ### Framework versions
108
+
109
+ - Transformers 4.42.3
110
+ - Pytorch 2.1.2
111
+ - Datasets 2.20.0
112
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a0649a88ebfe57a40935efa06ce1dc206b85108a850b8f6dadc096ec38f4521d
3
  size 343223968
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f4b6af500fa8ae979da7ae3d74950ffcb79b17b89d008a1852f79408f240951
3
  size 343223968