--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - precision - recall model-index: - name: ViT_ASVspoof_DF results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8934108527131783 - name: F1 type: f1 value: 0.8431164853649442 - name: Precision type: precision value: 0.7981829517456884 - name: Recall type: recall value: 0.8934108527131783 --- [Visualize in Weights & Biases](https://wandb.ai/bishertello-/uncategorized/runs/q4a21cv3) # ViT_ASVspoof_DF This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.8822 - Accuracy: 0.8934 - F1: 0.8431 - Precision: 0.7982 - Recall: 0.8934 - Test: 1 - Auc Roc: 0.3976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Test | Auc Roc | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:----:|:-------:| | 0.3293 | 0.1078 | 50 | 0.5369 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.4810 | | 0.1251 | 0.2155 | 100 | 0.7074 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.5209 | | 0.0671 | 0.3233 | 150 | 0.8683 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.5390 | | 0.0463 | 0.4310 | 200 | 0.8867 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.5820 | | 0.0365 | 0.5388 | 250 | 0.9675 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.6129 | | 0.0332 | 0.6466 | 300 | 1.1225 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.5544 | | 0.0788 | 0.7543 | 350 | 1.1081 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.5776 | | 0.0425 | 0.8621 | 400 | 1.4392 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.5835 | | 0.0566 | 0.9698 | 450 | 1.8030 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.5043 | | 0.0821 | 1.0776 | 500 | 1.8901 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.6352 | | 0.1122 | 1.1853 | 550 | 1.8085 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.3735 | | 0.0446 | 1.2931 | 600 | 1.9759 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.3383 | | 0.0342 | 1.4009 | 650 | 1.9482 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.4254 | | 0.028 | 1.5086 | 700 | 1.9181 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.3508 | | 0.0195 | 1.6164 | 750 | 1.9146 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.4860 | | 0.0107 | 1.7241 | 800 | 1.8752 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.4285 | | 0.0092 | 1.8319 | 850 | 1.8792 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.4012 | | 0.0 | 1.9397 | 900 | 1.8822 | 0.8934 | 0.8431 | 0.7982 | 0.8934 | 1 | 0.3976 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1