File size: 4,861 Bytes
ab03d65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
from io import BytesIO
import pickle
import time
import torch
from tqdm import tqdm
from collections import OrderedDict
def load_inputs(path, device, is_half=False):
parm = torch.load(path, map_location=torch.device("cpu"))
for key in parm.keys():
parm[key] = parm[key].to(device)
if is_half and parm[key].dtype == torch.float32:
parm[key] = parm[key].half()
elif not is_half and parm[key].dtype == torch.float16:
parm[key] = parm[key].float()
return parm
def benchmark(
model, inputs_path, device=torch.device("cpu"), epoch=1000, is_half=False
):
parm = load_inputs(inputs_path, device, is_half)
total_ts = 0.0
bar = tqdm(range(epoch))
for i in bar:
start_time = time.perf_counter()
o = model(**parm)
total_ts += time.perf_counter() - start_time
print(f"num_epoch: {epoch} | avg time(ms): {(total_ts*1000)/epoch}")
def jit_warm_up(model, inputs_path, device=torch.device("cpu"), epoch=5, is_half=False):
benchmark(model, inputs_path, device, epoch=epoch, is_half=is_half)
def to_jit_model(
model_path,
model_type: str,
mode: str = "trace",
inputs_path: str = None,
device=torch.device("cpu"),
is_half=False,
):
model = None
if model_type.lower() == "synthesizer":
from .get_synthesizer import get_synthesizer
model, _ = get_synthesizer(model_path, device)
model.forward = model.infer
elif model_type.lower() == "rmvpe":
from .get_rmvpe import get_rmvpe
model = get_rmvpe(model_path, device)
elif model_type.lower() == "hubert":
from .get_hubert import get_hubert_model
model = get_hubert_model(model_path, device)
model.forward = model.infer
else:
raise ValueError(f"No model type named {model_type}")
model = model.eval()
model = model.half() if is_half else model.float()
if mode == "trace":
assert not inputs_path
inputs = load_inputs(inputs_path, device, is_half)
model_jit = torch.jit.trace(model, example_kwarg_inputs=inputs)
elif mode == "script":
model_jit = torch.jit.script(model)
model_jit.to(device)
model_jit = model_jit.half() if is_half else model_jit.float()
# model = model.half() if is_half else model.float()
return (model, model_jit)
def export(
model: torch.nn.Module,
mode: str = "trace",
inputs: dict = None,
device=torch.device("cpu"),
is_half: bool = False,
) -> dict:
model = model.half() if is_half else model.float()
model.eval()
if mode == "trace":
assert inputs is not None
model_jit = torch.jit.trace(model, example_kwarg_inputs=inputs)
elif mode == "script":
model_jit = torch.jit.script(model)
model_jit.to(device)
model_jit = model_jit.half() if is_half else model_jit.float()
buffer = BytesIO()
# model_jit=model_jit.cpu()
torch.jit.save(model_jit, buffer)
del model_jit
cpt = OrderedDict()
cpt["model"] = buffer.getvalue()
cpt["is_half"] = is_half
return cpt
def load(path: str):
with open(path, "rb") as f:
return pickle.load(f)
def save(ckpt: dict, save_path: str):
with open(save_path, "wb") as f:
pickle.dump(ckpt, f)
def rmvpe_jit_export(
model_path: str,
mode: str = "script",
inputs_path: str = None,
save_path: str = None,
device=torch.device("cpu"),
is_half=False,
):
if not save_path:
save_path = model_path.rstrip(".pth")
save_path += ".half.jit" if is_half else ".jit"
if "cuda" in str(device) and ":" not in str(device):
device = torch.device("cuda:0")
from .get_rmvpe import get_rmvpe
model = get_rmvpe(model_path, device)
inputs = None
if mode == "trace":
inputs = load_inputs(inputs_path, device, is_half)
ckpt = export(model, mode, inputs, device, is_half)
ckpt["device"] = str(device)
save(ckpt, save_path)
return ckpt
def synthesizer_jit_export(
model_path: str,
mode: str = "script",
inputs_path: str = None,
save_path: str = None,
device=torch.device("cpu"),
is_half=False,
):
if not save_path:
save_path = model_path.rstrip(".pth")
save_path += ".half.jit" if is_half else ".jit"
if "cuda" in str(device) and ":" not in str(device):
device = torch.device("cuda:0")
from .get_synthesizer import get_synthesizer
model, cpt = get_synthesizer(model_path, device)
assert isinstance(cpt, dict)
model.forward = model.infer
inputs = None
if mode == "trace":
inputs = load_inputs(inputs_path, device, is_half)
ckpt = export(model, mode, inputs, device, is_half)
cpt.pop("weight")
cpt["model"] = ckpt["model"]
cpt["device"] = device
save(cpt, save_path)
return cpt
|