File size: 6,965 Bytes
57fb995
 
1f6aa2f
 
 
 
 
a703dfd
190683d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fb995
1f6aa2f
 
 
 
 
 
 
 
 
 
65ef3e9
23ae6e4
 
80d58f3
1f6aa2f
 
 
 
 
 
 
 
 
 
 
5027a7a
 
 
 
1f6aa2f
 
dcac409
1f6aa2f
 
 
 
 
 
 
 
 
 
 
791f3cb
 
 
 
 
 
f52e653
ee7bdba
 
 
190683d
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
---
license: apache-2.0
tags:
- Roleplay
- Solar
- Mistral
- Text Generation
- merge
model-index:
- name: SnowLotus-v2-10.7B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 64.76
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BlueNipples/SnowLotus-v2-10.7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 85.28
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BlueNipples/SnowLotus-v2-10.7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.1
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BlueNipples/SnowLotus-v2-10.7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 45.54
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BlueNipples/SnowLotus-v2-10.7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 82.08
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BlueNipples/SnowLotus-v2-10.7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 48.75
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BlueNipples/SnowLotus-v2-10.7B
      name: Open LLM Leaderboard
---
![SnowLotus Logo](https://cdn-uploads.huggingface.co/production/uploads/64bb1109aaccfd28b023bcec/gTQtPK46laLIFg0RTAv73.png)

### Premise

So this is a basic slerp merge between a smart model and a good prose model. Prose and smarts. What we all want in an uncensored RP model right? I feel like Solar has untapped potential, in any case. 

Sao10K's Frostwind finetune is a key component of the mixture, its smarts are impressive. NyxKrage's Frostmaid experiment, which merges Frostwind with a frankenmerge of Noromaid and a mystery medical model, delivers quite impressive prose. His model creatively incorporates long-range context and instructions too, despite being slightly incoherent due to the fraken merging. 

So those are the main ingredients. Thanks to Nyx for sorting out the pytorch files btw. 

GGUF (Small selection of Imatrix and regular k-quants): https://huggingface.co/BlueNipples/DaringLotus-SnowLotus-10.7b-IQ-GGUF
EXL2s: https://huggingface.co/zaq-hack/SnowLotus-v2-10.7B-bpw500-h6-exl2
https://huggingface.co/lucyknada/SnowLotus-v2-10.7B-3bpw-exl2

### Recipe

So, the recipe. I added solardoc by Nyx to frostwind at a 0.15 weight, and the gradient SLERP'd Frostwind (+solardoc) into Frostmaid with these params:

- filter: self_attn
      value: [0.9, 0.4, 0.1, 0, 0]
    - filter: mlp
      value: [0.05, 0.95]
    - value: 0.45


### Format Notes

Solar is desgined for 4k context, but Nyx reports that his merge works to 8k. Given this has a slerp gradient back into that, I'm not sure which applies here. Alpaca instruct formatting.

### Tentative Dozen or So Test Conclusion

This model seems to have better prose, less GPT-ish language and no degredation in coherency from the last version whilst retaining coherency from FrostWind (plus medical lora). I'm very pleased with this now, it's exactly what I wanted, basically Nyx's Frostmaid but smarter.

Cheers to all the finetuners, mergers and developers without which open source models wouldn't be half of what they are. 

Resources used:

https://huggingface.co/NyxKrage/FrostMaid-10.7B-TESTING-pt

https://huggingface.co/Sao10K/Frostwind-10.7B-v1

https://huggingface.co/NyxKrage/Solar-Doc-10.7B-Lora

https://github.com/cg123/mergekit/tree/main

### Ayumi Index

http://ayumi.m8geil.de/erp4_chatlogs/?S=rma_0#!/index

In the Ayumi ERPv4 Chat Log Index, SnowLotus scores a 94.10 in Flesch which means it produces more complex sentences than Daring (quite complex), DaringLotus scores higher in Var and Ad[jv], which means it makes heavier use of adjectives and adverbs (is more descriptive). Noteably Daring is in the top 8 for adjectives in a sentence, highest in it's weight class if you discount the chinese model, and in general both models did very well on this metric (SnowLotus ranks higher here than anything above it in IQ4), showcasing their descriptive ability. 

SnowLotus beats DaringLotus on IQ4 with a score of 70.94, only bet by SOLAR Instruct and Fimbulvetr in it's weight class (altho also noteably Kunoichi 7b by a slim margin), DaringLotus is a bit lower at 65.37 - not as smart. 

Interestingly the benchmarking here showed repetition for both models (which I haven't seen), but more with SnowLotus - so it's possible Daring repeats less than SnowLotus? These roughly confirm my impressions of the differences, altho potentially reveal some new details too. I've had a great experience RPing with these models, and seen no repetition myself, but be sure to use MinP or DynaTemp rather than the older samplers and be prepared to regen anything they get stuck on!
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_BlueNipples__SnowLotus-v2-10.7B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |65.09|
|AI2 Reasoning Challenge (25-Shot)|64.76|
|HellaSwag (10-Shot)              |85.28|
|MMLU (5-Shot)                    |64.10|
|TruthfulQA (0-shot)              |45.54|
|Winogrande (5-shot)              |82.08|
|GSM8k (5-shot)                   |48.75|