"""Tokenization classes for xTrimoPGLM.""" import os from typing import List, Optional, Union, Dict, Any from torch import TensorType from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast from transformers.tokenization_utils_base import EncodedInput, BatchEncoding VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"} def load_vocab_file(vocab_file: str) -> List[str]: with open(vocab_file, "r") as f: lines = f.read().splitlines() return [line.strip() for line in lines] class xTrimoPGLMTokenizer(PreTrainedTokenizer): """ Constructs a xTrimoPGLM tokenizer. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask", "position_ids"] def __init__( self, vocab_file: str, unk_token: str = "", pad_token: str = "", mask_token: str = "", eos_token: str = "", model_max_length: int = 2048, additional_special_tokens: Optional[List[str]] = None, **kwargs, ): self.all_tokens = load_vocab_file(vocab_file) self._id_to_token = dict(enumerate(self.all_tokens)) self._token_to_id = {tok: ind for ind, tok in enumerate(self.all_tokens)} if additional_special_tokens is None: additional_special_tokens = ['', '', '', '', '', '', '', '', ''] super().__init__( unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, eos_token=eos_token, model_max_length=model_max_length, additional_special_tokens=additional_special_tokens, **kwargs, ) self.unique_no_split_tokens = self.all_tokens self._update_trie(self.unique_no_split_tokens) def _convert_id_to_token(self, index: int) -> str: return self._id_to_token.get(index, self.unk_token) def _convert_token_to_id(self, token: str) -> int: return self._token_to_id.get(token, self._token_to_id.get(self.unk_token)) def _tokenize(self, text: str, **kwargs) -> List[str]: return text.split() def get_vocab(self) -> dict: base_vocab = self._token_to_id.copy() base_vocab.update(self.added_tokens_encoder) return base_vocab def token_to_id(self, token: str) -> int: return self._token_to_id.get(token, self._token_to_id.get(self.unk_token)) def id_to_token(self, index: int) -> str: return self._id_to_token.get(index, self.unk_token) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: sep = [self.eos_token_id] if token_ids_1 is None: if self.eos_token_id is None: return token_ids_0 else: return token_ids_0 + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!") return token_ids_0 + sep + token_ids_1 + sep # Multiple inputs always have an EOS token def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> tuple: vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + "tokenizer.model") with open(vocab_file, "w") as f: f.write("\n".join(self.all_tokens)) return (vocab_file,) @property def vocab_size(self) -> int: return len(self.all_tokens) def apply_chat_template( self, query, add_generation_prompt: bool = True, tokenize: bool = True, padding: bool = False, truncation: bool = False, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_dict: bool = False, tokenizer_kwargs: Optional[Dict[str, Any]] = None, add_special_tokens: bool = True, **kwargs, ) -> Union[str, List[int], List[str], List[List[int]], BatchEncoding]: generation_prompt = "" if isinstance(query, str): query = [query] prompt_query = [] if add_generation_prompt: for each in query: assert isinstance(each, str) prompt_query.append(generation_prompt+each) else: prompt_query = query if tokenize: output = self.batch_encode_plus( prompt_query, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors, is_split_into_words=True, add_special_tokens=False ) if return_dict: return output else: return output["input_ids"] else: return prompt_query