Bofandra commited on
Commit
9b43aa0
·
verified ·
1 Parent(s): 0e417e0

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,359 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Bofandra/fine-tuning-use-cmlm-multilingual-quran-translation
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:609
13
+ - loss:MegaBatchMarginLoss
14
+ widget:
15
+ - source_sentence: So which of the favors of your Lord would you deny
16
+ sentences:
17
+ - ' This is a straight path.'
18
+ - Have they not traveled through the land and seen how was the end of those before
19
+ them? Allah destroyed [everything] over them, and for the disbelievers is something
20
+ comparable.
21
+ - So which of the favors of your Lord would you deny?
22
+ - source_sentence: So would you perhaps, if you turned away, cause corruption on earth
23
+ and sever your [ties of] relationship
24
+ sentences:
25
+ - Said [the king to the women], "What was your condition when you sought to seduce
26
+ Joseph?" They said, "Perfect is Allah! We know about him no evil." The wife of
27
+ al-'Azeez said, "Now the truth has become evident. It was I who sought to seduce
28
+ him, and indeed, he is of the truthful.
29
+ - Then do they not reflect upon the Qur'an, or are there locks upon [their] hearts?
30
+ - ' Allah has not created the heavens and the earth and what is between them except
31
+ in truth and for a specified term. And indeed, many of the people, in [the matter
32
+ of] the meeting with their Lord, are disbelievers.'
33
+ - source_sentence: Then is he who will shield with his face the worst of the punishment
34
+ on the Day of Resurrection [like one secure from it]
35
+ sentences:
36
+ - ' But you will never find in the way of Allah any change, and you will never find
37
+ in the way of Allah any alteration.'
38
+ - ' Then We made the sun for it an indication.'
39
+ - ' And it will be said to the wrongdoers, "Taste what you used to earn."'
40
+ - source_sentence: Then is it the judgement of [the time of] ignorance they desire
41
+ sentences:
42
+ - Or do you have a clear authority?
43
+ - And they both raced to the door, and she tore his shirt from the back, and they
44
+ found her husband at the door. She said, "What is the recompense of one who intended
45
+ evil for your wife but that he be imprisoned or a painful punishment?"
46
+ - ' But who is better than Allah in judgement for a people who are certain [in faith].'
47
+ - source_sentence: Say, "Who provides for you from the heaven and the earth
48
+ sentences:
49
+ - Except for our first death, and we will not be punished?"
50
+ - And gave a little and [then] refrained?
51
+ - ' Or who controls hearing and sight and who brings the living out of the dead
52
+ and brings the dead out of the living and who arranges [every] matter'
53
+ ---
54
+
55
+ # SentenceTransformer based on Bofandra/fine-tuning-use-cmlm-multilingual-quran-translation
56
+
57
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Bofandra/fine-tuning-use-cmlm-multilingual-quran-translation](https://huggingface.co/Bofandra/fine-tuning-use-cmlm-multilingual-quran-translation). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
58
+
59
+ ## Model Details
60
+
61
+ ### Model Description
62
+ - **Model Type:** Sentence Transformer
63
+ - **Base model:** [Bofandra/fine-tuning-use-cmlm-multilingual-quran-translation](https://huggingface.co/Bofandra/fine-tuning-use-cmlm-multilingual-quran-translation) <!-- at revision 46d1967d948e90dde4397f342ad6ddfc99caa96a -->
64
+ - **Maximum Sequence Length:** 256 tokens
65
+ - **Output Dimensionality:** 768 tokens
66
+ - **Similarity Function:** Cosine Similarity
67
+ <!-- - **Training Dataset:** Unknown -->
68
+ <!-- - **Language:** Unknown -->
69
+ <!-- - **License:** Unknown -->
70
+
71
+ ### Model Sources
72
+
73
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
74
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
75
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
76
+
77
+ ### Full Model Architecture
78
+
79
+ ```
80
+ SentenceTransformer(
81
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
82
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
83
+ (2): Normalize()
84
+ )
85
+ ```
86
+
87
+ ## Usage
88
+
89
+ ### Direct Usage (Sentence Transformers)
90
+
91
+ First install the Sentence Transformers library:
92
+
93
+ ```bash
94
+ pip install -U sentence-transformers
95
+ ```
96
+
97
+ Then you can load this model and run inference.
98
+ ```python
99
+ from sentence_transformers import SentenceTransformer
100
+
101
+ # Download from the 🤗 Hub
102
+ model = SentenceTransformer("Bofandra/fine-tuning-use-cmlm-multilingual-quran-translation-qa")
103
+ # Run inference
104
+ sentences = [
105
+ 'Say, "Who provides for you from the heaven and the earth',
106
+ ' Or who controls hearing and sight and who brings the living out of the dead and brings the dead out of the living and who arranges [every] matter',
107
+ 'And gave a little and [then] refrained?',
108
+ ]
109
+ embeddings = model.encode(sentences)
110
+ print(embeddings.shape)
111
+ # [3, 768]
112
+
113
+ # Get the similarity scores for the embeddings
114
+ similarities = model.similarity(embeddings, embeddings)
115
+ print(similarities.shape)
116
+ # [3, 3]
117
+ ```
118
+
119
+ <!--
120
+ ### Direct Usage (Transformers)
121
+
122
+ <details><summary>Click to see the direct usage in Transformers</summary>
123
+
124
+ </details>
125
+ -->
126
+
127
+ <!--
128
+ ### Downstream Usage (Sentence Transformers)
129
+
130
+ You can finetune this model on your own dataset.
131
+
132
+ <details><summary>Click to expand</summary>
133
+
134
+ </details>
135
+ -->
136
+
137
+ <!--
138
+ ### Out-of-Scope Use
139
+
140
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
141
+ -->
142
+
143
+ <!--
144
+ ## Bias, Risks and Limitations
145
+
146
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
147
+ -->
148
+
149
+ <!--
150
+ ### Recommendations
151
+
152
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
153
+ -->
154
+
155
+ ## Training Details
156
+
157
+ ### Training Dataset
158
+
159
+ #### Unnamed Dataset
160
+
161
+
162
+ * Size: 609 training samples
163
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
164
+ * Approximate statistics based on the first 1000 samples:
165
+ | | sentence_0 | sentence_1 |
166
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
167
+ | type | string | string |
168
+ | details | <ul><li>min: 3 tokens</li><li>mean: 29.19 tokens</li><li>max: 93 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 29.93 tokens</li><li>max: 141 tokens</li></ul> |
169
+ * Samples:
170
+ | sentence_0 | sentence_1 |
171
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|
172
+ | <code>And then there came to them that which they were promised</code> | <code>Shall I inform you upon whom the devils descend?</code> |
173
+ | <code>But when the truth came to them from Us, they said, "Why was he not given like that which was given to Moses</code> | <code>" Did they not disbelieve in that which was given to Moses before</code> |
174
+ | <code>Have you not considered the assembly of the Children of Israel after [the time of] Moses when they said to a prophet of theirs, "Send to us a king, and we will fight in the way of Allah "</code> | <code> He said, "Would you perhaps refrain from fighting if fighting was prescribed for you</code> |
175
+ * Loss: [<code>MegaBatchMarginLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#megabatchmarginloss)
176
+
177
+ ### Training Hyperparameters
178
+ #### Non-Default Hyperparameters
179
+
180
+ - `per_device_train_batch_size`: 4
181
+ - `per_device_eval_batch_size`: 4
182
+ - `num_train_epochs`: 1
183
+ - `multi_dataset_batch_sampler`: round_robin
184
+
185
+ #### All Hyperparameters
186
+ <details><summary>Click to expand</summary>
187
+
188
+ - `overwrite_output_dir`: False
189
+ - `do_predict`: False
190
+ - `eval_strategy`: no
191
+ - `prediction_loss_only`: True
192
+ - `per_device_train_batch_size`: 4
193
+ - `per_device_eval_batch_size`: 4
194
+ - `per_gpu_train_batch_size`: None
195
+ - `per_gpu_eval_batch_size`: None
196
+ - `gradient_accumulation_steps`: 1
197
+ - `eval_accumulation_steps`: None
198
+ - `learning_rate`: 5e-05
199
+ - `weight_decay`: 0.0
200
+ - `adam_beta1`: 0.9
201
+ - `adam_beta2`: 0.999
202
+ - `adam_epsilon`: 1e-08
203
+ - `max_grad_norm`: 1
204
+ - `num_train_epochs`: 1
205
+ - `max_steps`: -1
206
+ - `lr_scheduler_type`: linear
207
+ - `lr_scheduler_kwargs`: {}
208
+ - `warmup_ratio`: 0.0
209
+ - `warmup_steps`: 0
210
+ - `log_level`: passive
211
+ - `log_level_replica`: warning
212
+ - `log_on_each_node`: True
213
+ - `logging_nan_inf_filter`: True
214
+ - `save_safetensors`: True
215
+ - `save_on_each_node`: False
216
+ - `save_only_model`: False
217
+ - `restore_callback_states_from_checkpoint`: False
218
+ - `no_cuda`: False
219
+ - `use_cpu`: False
220
+ - `use_mps_device`: False
221
+ - `seed`: 42
222
+ - `data_seed`: None
223
+ - `jit_mode_eval`: False
224
+ - `use_ipex`: False
225
+ - `bf16`: False
226
+ - `fp16`: False
227
+ - `fp16_opt_level`: O1
228
+ - `half_precision_backend`: auto
229
+ - `bf16_full_eval`: False
230
+ - `fp16_full_eval`: False
231
+ - `tf32`: None
232
+ - `local_rank`: 0
233
+ - `ddp_backend`: None
234
+ - `tpu_num_cores`: None
235
+ - `tpu_metrics_debug`: False
236
+ - `debug`: []
237
+ - `dataloader_drop_last`: False
238
+ - `dataloader_num_workers`: 0
239
+ - `dataloader_prefetch_factor`: None
240
+ - `past_index`: -1
241
+ - `disable_tqdm`: False
242
+ - `remove_unused_columns`: True
243
+ - `label_names`: None
244
+ - `load_best_model_at_end`: False
245
+ - `ignore_data_skip`: False
246
+ - `fsdp`: []
247
+ - `fsdp_min_num_params`: 0
248
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
249
+ - `fsdp_transformer_layer_cls_to_wrap`: None
250
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
251
+ - `deepspeed`: None
252
+ - `label_smoothing_factor`: 0.0
253
+ - `optim`: adamw_torch
254
+ - `optim_args`: None
255
+ - `adafactor`: False
256
+ - `group_by_length`: False
257
+ - `length_column_name`: length
258
+ - `ddp_find_unused_parameters`: None
259
+ - `ddp_bucket_cap_mb`: None
260
+ - `ddp_broadcast_buffers`: False
261
+ - `dataloader_pin_memory`: True
262
+ - `dataloader_persistent_workers`: False
263
+ - `skip_memory_metrics`: True
264
+ - `use_legacy_prediction_loop`: False
265
+ - `push_to_hub`: False
266
+ - `resume_from_checkpoint`: None
267
+ - `hub_model_id`: None
268
+ - `hub_strategy`: every_save
269
+ - `hub_private_repo`: False
270
+ - `hub_always_push`: False
271
+ - `gradient_checkpointing`: False
272
+ - `gradient_checkpointing_kwargs`: None
273
+ - `include_inputs_for_metrics`: False
274
+ - `eval_do_concat_batches`: True
275
+ - `fp16_backend`: auto
276
+ - `push_to_hub_model_id`: None
277
+ - `push_to_hub_organization`: None
278
+ - `mp_parameters`:
279
+ - `auto_find_batch_size`: False
280
+ - `full_determinism`: False
281
+ - `torchdynamo`: None
282
+ - `ray_scope`: last
283
+ - `ddp_timeout`: 1800
284
+ - `torch_compile`: False
285
+ - `torch_compile_backend`: None
286
+ - `torch_compile_mode`: None
287
+ - `dispatch_batches`: None
288
+ - `split_batches`: None
289
+ - `include_tokens_per_second`: False
290
+ - `include_num_input_tokens_seen`: False
291
+ - `neftune_noise_alpha`: None
292
+ - `optim_target_modules`: None
293
+ - `batch_eval_metrics`: False
294
+ - `eval_on_start`: False
295
+ - `batch_sampler`: batch_sampler
296
+ - `multi_dataset_batch_sampler`: round_robin
297
+
298
+ </details>
299
+
300
+ ### Framework Versions
301
+ - Python: 3.10.12
302
+ - Sentence Transformers: 3.0.1
303
+ - Transformers: 4.42.3
304
+ - PyTorch: 2.3.0+cu121
305
+ - Accelerate: 0.31.0
306
+ - Datasets: 2.20.0
307
+ - Tokenizers: 0.19.1
308
+
309
+ ## Citation
310
+
311
+ ### BibTeX
312
+
313
+ #### Sentence Transformers
314
+ ```bibtex
315
+ @inproceedings{reimers-2019-sentence-bert,
316
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
317
+ author = "Reimers, Nils and Gurevych, Iryna",
318
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
319
+ month = "11",
320
+ year = "2019",
321
+ publisher = "Association for Computational Linguistics",
322
+ url = "https://arxiv.org/abs/1908.10084",
323
+ }
324
+ ```
325
+
326
+ #### MegaBatchMarginLoss
327
+ ```bibtex
328
+ @inproceedings{wieting-gimpel-2018-paranmt,
329
+ title = "{P}ara{NMT}-50{M}: Pushing the Limits of Paraphrastic Sentence Embeddings with Millions of Machine Translations",
330
+ author = "Wieting, John and Gimpel, Kevin",
331
+ editor = "Gurevych, Iryna and Miyao, Yusuke",
332
+ booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
333
+ month = jul,
334
+ year = "2018",
335
+ address = "Melbourne, Australia",
336
+ publisher = "Association for Computational Linguistics",
337
+ url = "https://aclanthology.org/P18-1042",
338
+ doi = "10.18653/v1/P18-1042",
339
+ pages = "451--462",
340
+ }
341
+ ```
342
+
343
+ <!--
344
+ ## Glossary
345
+
346
+ *Clearly define terms in order to be accessible across audiences.*
347
+ -->
348
+
349
+ <!--
350
+ ## Model Card Authors
351
+
352
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
353
+ -->
354
+
355
+ <!--
356
+ ## Model Card Contact
357
+
358
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
359
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Bofandra/fine-tuning-use-cmlm-multilingual-quran-translation",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-12,
16
+ "max_position_embeddings": 512,
17
+ "model_type": "bert",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 0,
21
+ "pooler_fc_size": 768,
22
+ "pooler_num_attention_heads": 12,
23
+ "pooler_num_fc_layers": 3,
24
+ "pooler_size_per_head": 128,
25
+ "pooler_type": "first_token_transform",
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.42.3",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 501153
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.3",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43197df4695c09dc48121664b3c2d721a4f7ff45c04d1ca899e97cb46bb4c93a
3
+ size 1883730160
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92262b29204f8fdc169a63f9005a0e311a16262cef4d96ecfe2a7ed638662ed3
3
+ size 13632172
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "full_tokenizer_file": null,
49
+ "mask_token": "[MASK]",
50
+ "max_length": 256,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff