Bofandra commited on
Commit
7a1271e
1 Parent(s): 5f44721

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,360 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/use-cmlm-multilingual
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:6235
13
+ - loss:MegaBatchMarginLoss
14
+ widget:
15
+ - source_sentence: واسأل من أرسلنا من قبلك من رسلنا أجعلنا من دون الرحمن آلهة يعبدون
16
+ sentences:
17
+ - وجعلني مباركا أين ما كنت وأوصاني بالصلاة والزكاة ما دمت حيا
18
+ - فيومئذ وقعت الواقعة
19
+ - ولقد أرسلنا موسى بآياتنا إلى فرعون وملئه فقال إني رسول رب العالمين
20
+ - source_sentence: ولن تستطيعوا أن تعدلوا بين النساء ولو حرصتم فلا تميلوا كل الميل
21
+ فتذروها كالمعلقة وإن تصلحوا وتتقوا فإن الله كان غفورا رحيما
22
+ sentences:
23
+ - وهو الذي مرج البحرين هذا عذب فرات وهذا ملح أجاج وجعل بينهما برزخا وحجرا محجورا
24
+ - قل اللهم مالك الملك تؤتي الملك من تشاء وتنزع الملك ممن تشاء وتعز من تشاء وتذل
25
+ من تشاء بيدك الخير إنك على كل شيء قدير
26
+ - وإن يتفرقا يغن الله كلا من سعته وكان الله واسعا حكيما
27
+ - source_sentence: قالوا نريد أن نأكل منها وتطمئن قلوبنا ونعلم أن قد صدقتنا ونكون
28
+ عليها من الشاهدين
29
+ sentences:
30
+ - قال عيسى ابن مريم اللهم ربنا أنزل علينا مائدة من السماء تكون لنا عيدا لأولنا وآخرنا
31
+ وآية منك وارزقنا وأنت خير الرازقين
32
+ - ليعذب الله المنافقين والمنافقات والمشركين والمشركات ويتوب الله على المؤمنين والمؤمنات
33
+ وكان الله غفورا رحيما
34
+ - فقلت استغفروا ربكم إنه كان غفارا
35
+ - source_sentence: ولا تحسبن الذين قتلوا في سبيل الله أمواتا بل أحياء عند ربهم يرزقون
36
+ sentences:
37
+ - بل كذبوا بالحق لما جاءهم فهم في أمر مريج
38
+ - قد خسر الذين كذبوا بلقاء الله حتى إذا جاءتهم الساعة بغتة قالوا يا حسرتنا على ما
39
+ فرطنا فيها وهم يحملون أوزارهم على ظهورهم ألا ساء ما يزرون
40
+ - فرحين بما آتاهم الله من فضله ويستبشرون بالذين لم يلحقوا بهم من خلفهم ألا خوف عليهم
41
+ ولا هم يحزنون
42
+ - source_sentence: وإذ واعدنا موسى أربعين ليلة ثم اتخذتم العجل من بعده وأنتم ظالمون
43
+ sentences:
44
+ - ثم عفونا عنكم من بعد ذلك لعلكم تشكرون
45
+ - فاتقوا الله وأطيعون
46
+ - نحن أعلم بما يقولون وما أنت عليهم بجبار فذكر بالقرآن من يخاف وعيد
47
+ ---
48
+
49
+ # SentenceTransformer based on sentence-transformers/use-cmlm-multilingual
50
+
51
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/use-cmlm-multilingual](https://huggingface.co/sentence-transformers/use-cmlm-multilingual). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
52
+
53
+ ## Model Details
54
+
55
+ ### Model Description
56
+ - **Model Type:** Sentence Transformer
57
+ - **Base model:** [sentence-transformers/use-cmlm-multilingual](https://huggingface.co/sentence-transformers/use-cmlm-multilingual) <!-- at revision 6f8ff6583c371cbc4d6d3b93a5e37a888fd54574 -->
58
+ - **Maximum Sequence Length:** 256 tokens
59
+ - **Output Dimensionality:** 768 tokens
60
+ - **Similarity Function:** Cosine Similarity
61
+ <!-- - **Training Dataset:** Unknown -->
62
+ <!-- - **Language:** Unknown -->
63
+ <!-- - **License:** Unknown -->
64
+
65
+ ### Model Sources
66
+
67
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
68
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
69
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
70
+
71
+ ### Full Model Architecture
72
+
73
+ ```
74
+ SentenceTransformer(
75
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
76
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
77
+ (2): Normalize()
78
+ )
79
+ ```
80
+
81
+ ## Usage
82
+
83
+ ### Direct Usage (Sentence Transformers)
84
+
85
+ First install the Sentence Transformers library:
86
+
87
+ ```bash
88
+ pip install -U sentence-transformers
89
+ ```
90
+
91
+ Then you can load this model and run inference.
92
+ ```python
93
+ from sentence_transformers import SentenceTransformer
94
+
95
+ # Download from the 🤗 Hub
96
+ model = SentenceTransformer("Bofandra/fine-tuning-use-cmlm-multilingual-quran")
97
+ # Run inference
98
+ sentences = [
99
+ 'وإذ واعدنا موسى أربعين ليلة ثم اتخذتم العجل من بعده وأنتم ظالمون',
100
+ 'ثم عفونا عنكم من بعد ذلك لعلكم تشكرون',
101
+ 'نحن أعلم بما يقولون وما أنت عليهم بجبار فذكر بالقرآن من يخاف وعيد',
102
+ ]
103
+ embeddings = model.encode(sentences)
104
+ print(embeddings.shape)
105
+ # [3, 768]
106
+
107
+ # Get the similarity scores for the embeddings
108
+ similarities = model.similarity(embeddings, embeddings)
109
+ print(similarities.shape)
110
+ # [3, 3]
111
+ ```
112
+
113
+ <!--
114
+ ### Direct Usage (Transformers)
115
+
116
+ <details><summary>Click to see the direct usage in Transformers</summary>
117
+
118
+ </details>
119
+ -->
120
+
121
+ <!--
122
+ ### Downstream Usage (Sentence Transformers)
123
+
124
+ You can finetune this model on your own dataset.
125
+
126
+ <details><summary>Click to expand</summary>
127
+
128
+ </details>
129
+ -->
130
+
131
+ <!--
132
+ ### Out-of-Scope Use
133
+
134
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
135
+ -->
136
+
137
+ <!--
138
+ ## Bias, Risks and Limitations
139
+
140
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
141
+ -->
142
+
143
+ <!--
144
+ ### Recommendations
145
+
146
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
147
+ -->
148
+
149
+ ## Training Details
150
+
151
+ ### Training Dataset
152
+
153
+ #### Unnamed Dataset
154
+
155
+
156
+ * Size: 6,235 training samples
157
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
158
+ * Approximate statistics based on the first 1000 samples:
159
+ | | sentence_0 | sentence_1 |
160
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
161
+ | type | string | string |
162
+ | details | <ul><li>min: 4 tokens</li><li>mean: 24.26 tokens</li><li>max: 122 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 25.14 tokens</li><li>max: 130 tokens</li></ul> |
163
+ * Samples:
164
+ | sentence_0 | sentence_1 |
165
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
166
+ | <code>يوم يسحبون في النار على وجوههم ذوقوا مس سقر</code> | <code>إنا كل شيء خلقناه بقدر</code> |
167
+ | <code>فإذا نقر في الناقور</code> | <code>فذلك يومئذ يوم عسير</code> |
168
+ | <code>في الدنيا والآخرة ويسألونك عن اليتامى قل إصلاح لهم خير وإن تخالطوهم فإخوانكم والله يعلم المفسد من المصلح ولو شاء الله لأعنتكم إن الله عزيز حكيم</code> | <code>ولا تنكحوا المشركات حتى يؤمن ولأمة مؤمنة خير من مشركة ولو أعجبتكم ولا تنكحوا المشركين حتى يؤمنوا ولعبد مؤمن خير من مشرك ولو أعجبكم أولئك يدعون إلى النار والله يدعو إلى الجنة والمغفرة بإذنه ويبين آياته للناس لعلهم يتذكرون</code> |
169
+ * Loss: [<code>MegaBatchMarginLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#megabatchmarginloss)
170
+
171
+ ### Training Hyperparameters
172
+ #### Non-Default Hyperparameters
173
+
174
+ - `per_device_train_batch_size`: 4
175
+ - `per_device_eval_batch_size`: 4
176
+ - `num_train_epochs`: 1
177
+ - `multi_dataset_batch_sampler`: round_robin
178
+
179
+ #### All Hyperparameters
180
+ <details><summary>Click to expand</summary>
181
+
182
+ - `overwrite_output_dir`: False
183
+ - `do_predict`: False
184
+ - `eval_strategy`: no
185
+ - `prediction_loss_only`: True
186
+ - `per_device_train_batch_size`: 4
187
+ - `per_device_eval_batch_size`: 4
188
+ - `per_gpu_train_batch_size`: None
189
+ - `per_gpu_eval_batch_size`: None
190
+ - `gradient_accumulation_steps`: 1
191
+ - `eval_accumulation_steps`: None
192
+ - `learning_rate`: 5e-05
193
+ - `weight_decay`: 0.0
194
+ - `adam_beta1`: 0.9
195
+ - `adam_beta2`: 0.999
196
+ - `adam_epsilon`: 1e-08
197
+ - `max_grad_norm`: 1
198
+ - `num_train_epochs`: 1
199
+ - `max_steps`: -1
200
+ - `lr_scheduler_type`: linear
201
+ - `lr_scheduler_kwargs`: {}
202
+ - `warmup_ratio`: 0.0
203
+ - `warmup_steps`: 0
204
+ - `log_level`: passive
205
+ - `log_level_replica`: warning
206
+ - `log_on_each_node`: True
207
+ - `logging_nan_inf_filter`: True
208
+ - `save_safetensors`: True
209
+ - `save_on_each_node`: False
210
+ - `save_only_model`: False
211
+ - `restore_callback_states_from_checkpoint`: False
212
+ - `no_cuda`: False
213
+ - `use_cpu`: False
214
+ - `use_mps_device`: False
215
+ - `seed`: 42
216
+ - `data_seed`: None
217
+ - `jit_mode_eval`: False
218
+ - `use_ipex`: False
219
+ - `bf16`: False
220
+ - `fp16`: False
221
+ - `fp16_opt_level`: O1
222
+ - `half_precision_backend`: auto
223
+ - `bf16_full_eval`: False
224
+ - `fp16_full_eval`: False
225
+ - `tf32`: None
226
+ - `local_rank`: 0
227
+ - `ddp_backend`: None
228
+ - `tpu_num_cores`: None
229
+ - `tpu_metrics_debug`: False
230
+ - `debug`: []
231
+ - `dataloader_drop_last`: False
232
+ - `dataloader_num_workers`: 0
233
+ - `dataloader_prefetch_factor`: None
234
+ - `past_index`: -1
235
+ - `disable_tqdm`: False
236
+ - `remove_unused_columns`: True
237
+ - `label_names`: None
238
+ - `load_best_model_at_end`: False
239
+ - `ignore_data_skip`: False
240
+ - `fsdp`: []
241
+ - `fsdp_min_num_params`: 0
242
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
243
+ - `fsdp_transformer_layer_cls_to_wrap`: None
244
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
245
+ - `deepspeed`: None
246
+ - `label_smoothing_factor`: 0.0
247
+ - `optim`: adamw_torch
248
+ - `optim_args`: None
249
+ - `adafactor`: False
250
+ - `group_by_length`: False
251
+ - `length_column_name`: length
252
+ - `ddp_find_unused_parameters`: None
253
+ - `ddp_bucket_cap_mb`: None
254
+ - `ddp_broadcast_buffers`: False
255
+ - `dataloader_pin_memory`: True
256
+ - `dataloader_persistent_workers`: False
257
+ - `skip_memory_metrics`: True
258
+ - `use_legacy_prediction_loop`: False
259
+ - `push_to_hub`: False
260
+ - `resume_from_checkpoint`: None
261
+ - `hub_model_id`: None
262
+ - `hub_strategy`: every_save
263
+ - `hub_private_repo`: False
264
+ - `hub_always_push`: False
265
+ - `gradient_checkpointing`: False
266
+ - `gradient_checkpointing_kwargs`: None
267
+ - `include_inputs_for_metrics`: False
268
+ - `eval_do_concat_batches`: True
269
+ - `fp16_backend`: auto
270
+ - `push_to_hub_model_id`: None
271
+ - `push_to_hub_organization`: None
272
+ - `mp_parameters`:
273
+ - `auto_find_batch_size`: False
274
+ - `full_determinism`: False
275
+ - `torchdynamo`: None
276
+ - `ray_scope`: last
277
+ - `ddp_timeout`: 1800
278
+ - `torch_compile`: False
279
+ - `torch_compile_backend`: None
280
+ - `torch_compile_mode`: None
281
+ - `dispatch_batches`: None
282
+ - `split_batches`: None
283
+ - `include_tokens_per_second`: False
284
+ - `include_num_input_tokens_seen`: False
285
+ - `neftune_noise_alpha`: None
286
+ - `optim_target_modules`: None
287
+ - `batch_eval_metrics`: False
288
+ - `batch_sampler`: batch_sampler
289
+ - `multi_dataset_batch_sampler`: round_robin
290
+
291
+ </details>
292
+
293
+ ### Training Logs
294
+ | Epoch | Step | Training Loss |
295
+ |:------:|:----:|:-------------:|
296
+ | 0.3207 | 500 | 0.5052 |
297
+ | 0.6414 | 1000 | 0.4827 |
298
+ | 0.9622 | 1500 | 0.466 |
299
+
300
+
301
+ ### Framework Versions
302
+ - Python: 3.10.12
303
+ - Sentence Transformers: 3.0.1
304
+ - Transformers: 4.41.2
305
+ - PyTorch: 2.3.0+cu121
306
+ - Accelerate: 0.31.0
307
+ - Datasets: 2.20.0
308
+ - Tokenizers: 0.19.1
309
+
310
+ ## Citation
311
+
312
+ ### BibTeX
313
+
314
+ #### Sentence Transformers
315
+ ```bibtex
316
+ @inproceedings{reimers-2019-sentence-bert,
317
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
318
+ author = "Reimers, Nils and Gurevych, Iryna",
319
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
320
+ month = "11",
321
+ year = "2019",
322
+ publisher = "Association for Computational Linguistics",
323
+ url = "https://arxiv.org/abs/1908.10084",
324
+ }
325
+ ```
326
+
327
+ #### MegaBatchMarginLoss
328
+ ```bibtex
329
+ @inproceedings{wieting-gimpel-2018-paranmt,
330
+ title = "{P}ara{NMT}-50{M}: Pushing the Limits of Paraphrastic Sentence Embeddings with Millions of Machine Translations",
331
+ author = "Wieting, John and Gimpel, Kevin",
332
+ editor = "Gurevych, Iryna and Miyao, Yusuke",
333
+ booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
334
+ month = jul,
335
+ year = "2018",
336
+ address = "Melbourne, Australia",
337
+ publisher = "Association for Computational Linguistics",
338
+ url = "https://aclanthology.org/P18-1042",
339
+ doi = "10.18653/v1/P18-1042",
340
+ pages = "451--462",
341
+ }
342
+ ```
343
+
344
+ <!--
345
+ ## Glossary
346
+
347
+ *Clearly define terms in order to be accessible across audiences.*
348
+ -->
349
+
350
+ <!--
351
+ ## Model Card Authors
352
+
353
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
354
+ -->
355
+
356
+ <!--
357
+ ## Model Card Contact
358
+
359
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
360
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/use-cmlm-multilingual",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-12,
16
+ "max_position_embeddings": 512,
17
+ "model_type": "bert",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 0,
21
+ "pooler_fc_size": 768,
22
+ "pooler_num_attention_heads": 12,
23
+ "pooler_num_fc_layers": 3,
24
+ "pooler_size_per_head": 128,
25
+ "pooler_type": "first_token_transform",
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 501153
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c425c74890196acbe917ea8e9b35939e56f3d804a583c362845b49979dcf071
3
+ size 1883730160
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92262b29204f8fdc169a63f9005a0e311a16262cef4d96ecfe2a7ed638662ed3
3
+ size 13632172
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "full_tokenizer_file": null,
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff