File size: 137,069 Bytes
934a9a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
---
base_model: sentence-transformers/all-mpnet-base-v2
datasets:
- code-search-net/code_search_net
language:
- code
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:20000
- loss:CoSENTLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: KeypointsOnImage.to_xy_array
  sentences:
  - "def to_xy_array(self):\n        \"\"\"\n        Convert keypoint coordinates\
    \ to ``(N,2)`` array.\n\n        Returns\n        -------\n        (N, 2) ndarray\n\
    \            Array containing the coordinates of all keypoints.\n            Shape\
    \ is ``(N,2)`` with coordinates in xy-form.\n\n        \"\"\"\n        result\
    \ = np.zeros((len(self.keypoints), 2), dtype=np.float32)\n        for i, keypoint\
    \ in enumerate(self.keypoints):\n            result[i, 0] = keypoint.x\n     \
    \       result[i, 1] = keypoint.y\n        return result"
  - "def _generateMetricSpecs(options):\n  \"\"\" Generates the Metrics for a given\
    \ InferenceType\n\n  Parameters:\n  -------------------------------------------------------------------------\n\
    \  options: ExpGenerator options\n  retval: (metricsList, optimizeMetricLabel)\n\
    \            metricsList: list of metric string names\n            optimizeMetricLabel:\
    \ Name of the metric which to optimize over\n\n  \"\"\"\n  inferenceType = options['inferenceType']\n\
    \  inferenceArgs = options['inferenceArgs']\n  predictionSteps = inferenceArgs['predictionSteps']\n\
    \  metricWindow = options['metricWindow']\n  if metricWindow is None:\n    metricWindow\
    \ = int(Configuration.get(\"nupic.opf.metricWindow\"))\n\n  metricSpecStrings\
    \ = []\n  optimizeMetricLabel = \"\"\n\n  # -----------------------------------------------------------------------\n\
    \  # Generate the metrics specified by the expGenerator paramters\n  metricSpecStrings.extend(_generateExtraMetricSpecs(options))\n\
    \n  # -----------------------------------------------------------------------\n\
    \n  optimizeMetricSpec = None\n  # If using a dynamically computed prediction\
    \ steps (i.e. when swarming\n  #  over aggregation is requested), then we will\
    \ plug in the variable\n  #  predictionSteps in place of the statically provided\
    \ predictionSteps\n  #  from the JSON description.\n  if options['dynamicPredictionSteps']:\n\
    \    assert len(predictionSteps) == 1\n    predictionSteps = ['$REPLACE_ME']\n\
    \n  # -----------------------------------------------------------------------\n\
    \  # Metrics for temporal prediction\n  if inferenceType in (InferenceType.TemporalNextStep,\n\
    \                       InferenceType.TemporalAnomaly,\n                     \
    \  InferenceType.TemporalMultiStep,\n                       InferenceType.NontemporalMultiStep,\n\
    \                       InferenceType.NontemporalClassification,\n           \
    \            'MultiStep'):\n\n    predictedFieldName, predictedFieldType = _getPredictedField(options)\n\
    \    isCategory = _isCategory(predictedFieldType)\n    metricNames = ('avg_err',)\
    \ if isCategory else ('aae', 'altMAPE')\n    trivialErrorMetric = 'avg_err' if\
    \ isCategory else 'altMAPE'\n    oneGramErrorMetric = 'avg_err' if isCategory\
    \ else 'altMAPE'\n    movingAverageBaselineName = 'moving_mode' if isCategory\
    \ else 'moving_mean'\n\n    # Multi-step metrics\n    for metricName in metricNames:\n\
    \      metricSpec, metricLabel = \\\n        _generateMetricSpecString(field=predictedFieldName,\n\
    \                 inferenceElement=InferenceElement.multiStepBestPredictions,\n\
    \                 metric='multiStep',\n                 params={'errorMetric':\
    \ metricName,\n                               'window':metricWindow,\n       \
    \                        'steps': predictionSteps},\n                 returnLabel=True)\n\
    \      metricSpecStrings.append(metricSpec)\n\n    # If the custom error metric\
    \ was specified, add that\n    if options[\"customErrorMetric\"] is not None :\n\
    \      metricParams = dict(options[\"customErrorMetric\"])\n      metricParams['errorMetric']\
    \ = 'custom_error_metric'\n      metricParams['steps'] = predictionSteps\n   \
    \   # If errorWindow is not specified, make it equal to the default window\n \
    \     if not \"errorWindow\" in metricParams:\n        metricParams[\"errorWindow\"\
    ] = metricWindow\n      metricSpec, metricLabel =_generateMetricSpecString(field=predictedFieldName,\n\
    \                   inferenceElement=InferenceElement.multiStepPredictions,\n\
    \                   metric=\"multiStep\",\n                   params=metricParams,\n\
    \                   returnLabel=True)\n      metricSpecStrings.append(metricSpec)\n\
    \n    # If this is the first specified step size, optimize for it. Be sure to\n\
    \    #  escape special characters since this is a regular expression\n    optimizeMetricSpec\
    \ = metricSpec\n    metricLabel = metricLabel.replace('[', '\\\\[')\n    metricLabel\
    \ = metricLabel.replace(']', '\\\\]')\n    optimizeMetricLabel = metricLabel\n\
    \n    if options[\"customErrorMetric\"] is not None :\n      optimizeMetricLabel\
    \ = \".*custom_error_metric.*\"\n\n    # Add in the trivial metrics\n    if options[\"\
    runBaselines\"] \\\n          and inferenceType != InferenceType.NontemporalClassification:\n\
    \      for steps in predictionSteps:\n        metricSpecStrings.append(\n    \
    \      _generateMetricSpecString(field=predictedFieldName,\n                 \
    \                   inferenceElement=InferenceElement.prediction,\n          \
    \                          metric=\"trivial\",\n                             \
    \       params={'window':metricWindow,\n                                     \
    \             \"errorMetric\":trivialErrorMetric,\n                          \
    \                        'steps': steps})\n          )\n\n        ##Add in the\
    \ One-Gram baseline error metric\n        #metricSpecStrings.append(\n       \
    \ #  _generateMetricSpecString(field=predictedFieldName,\n        #          \
    \                  inferenceElement=InferenceElement.encodings,\n        #   \
    \                         metric=\"two_gram\",\n        #                    \
    \        params={'window':metricWindow,\n        #                           \
    \               \"errorMetric\":oneGramErrorMetric,\n        #               \
    \                           'predictionField':predictedFieldName,\n        # \
    \                                         'steps': steps})\n        #  )\n   \
    \     #\n        #Include the baseline moving mean/mode metric\n        if isCategory:\n\
    \          metricSpecStrings.append(\n            _generateMetricSpecString(field=predictedFieldName,\n\
    \                                      inferenceElement=InferenceElement.prediction,\n\
    \                                      metric=movingAverageBaselineName,\n   \
    \                                   params={'window':metricWindow\n          \
    \                                          ,\"errorMetric\":\"avg_err\",\n   \
    \                                                 \"mode_window\":200,\n     \
    \                                               \"steps\": steps})\n         \
    \   )\n        else :\n          metricSpecStrings.append(\n            _generateMetricSpecString(field=predictedFieldName,\n\
    \                                      inferenceElement=InferenceElement.prediction,\n\
    \                                      metric=movingAverageBaselineName,\n   \
    \                                   params={'window':metricWindow\n          \
    \                                          ,\"errorMetric\":\"altMAPE\",\n   \
    \                                                 \"mean_window\":200,\n     \
    \                                               \"steps\": steps})\n         \
    \   )\n\n\n\n\n  # -----------------------------------------------------------------------\n\
    \  # Metrics for classification\n  elif inferenceType in (InferenceType.TemporalClassification):\n\
    \n    metricName = 'avg_err'\n    trivialErrorMetric = 'avg_err'\n    oneGramErrorMetric\
    \ = 'avg_err'\n    movingAverageBaselineName = 'moving_mode'\n\n    optimizeMetricSpec,\
    \ optimizeMetricLabel = \\\n      _generateMetricSpecString(inferenceElement=InferenceElement.classification,\n\
    \                               metric=metricName,\n                         \
    \      params={'window':metricWindow},\n                               returnLabel=True)\n\
    \n    metricSpecStrings.append(optimizeMetricSpec)\n\n    if options[\"runBaselines\"\
    ]:\n      # If temporal, generate the trivial predictor metric\n      if inferenceType\
    \ == InferenceType.TemporalClassification:\n        metricSpecStrings.append(\n\
    \          _generateMetricSpecString(inferenceElement=InferenceElement.classification,\n\
    \                                    metric=\"trivial\",\n                   \
    \                 params={'window':metricWindow,\n                           \
    \                       \"errorMetric\":trivialErrorMetric})\n          )\n  \
    \      metricSpecStrings.append(\n          _generateMetricSpecString(inferenceElement=InferenceElement.classification,\n\
    \                                    metric=\"two_gram\",\n                  \
    \                  params={'window':metricWindow,\n                          \
    \                        \"errorMetric\":oneGramErrorMetric})\n          )\n \
    \       metricSpecStrings.append(\n          _generateMetricSpecString(inferenceElement=InferenceElement.classification,\n\
    \                                    metric=movingAverageBaselineName,\n     \
    \                               params={'window':metricWindow\n              \
    \                                    ,\"errorMetric\":\"avg_err\",\n         \
    \                                         \"mode_window\":200})\n          )\n\
    \n\n    # Custom Error Metric\n    if not options[\"customErrorMetric\"] == None\
    \ :\n      #If errorWindow is not specified, make it equal to the default window\n\
    \      if not \"errorWindow\" in options[\"customErrorMetric\"]:\n        options[\"\
    customErrorMetric\"][\"errorWindow\"] = metricWindow\n      optimizeMetricSpec\
    \ = _generateMetricSpecString(\n                                inferenceElement=InferenceElement.classification,\n\
    \                                metric=\"custom\",\n                        \
    \        params=options[\"customErrorMetric\"])\n      optimizeMetricLabel = \"\
    .*custom_error_metric.*\"\n\n      metricSpecStrings.append(optimizeMetricSpec)\n\
    \n\n  # -----------------------------------------------------------------------\n\
    \  # If plug in the predictionSteps variable for any dynamically generated\n \
    \ #  prediction steps\n  if options['dynamicPredictionSteps']:\n    for i in range(len(metricSpecStrings)):\n\
    \      metricSpecStrings[i] = metricSpecStrings[i].replace(\n          \"'$REPLACE_ME'\"\
    , \"predictionSteps\")\n    optimizeMetricLabel = optimizeMetricLabel.replace(\n\
    \        \"'$REPLACE_ME'\", \".*\")\n  return metricSpecStrings, optimizeMetricLabel"
  - "def create_perf_attrib_stats(perf_attrib, risk_exposures):\n    \"\"\"\n    Takes\
    \ perf attribution data over a period of time and computes annualized\n    multifactor\
    \ alpha, multifactor sharpe, risk exposures.\n    \"\"\"\n    summary = OrderedDict()\n\
    \    total_returns = perf_attrib['total_returns']\n    specific_returns = perf_attrib['specific_returns']\n\
    \    common_returns = perf_attrib['common_returns']\n\n    summary['Annualized\
    \ Specific Return'] =\\\n        ep.annual_return(specific_returns)\n    summary['Annualized\
    \ Common Return'] =\\\n        ep.annual_return(common_returns)\n    summary['Annualized\
    \ Total Return'] =\\\n        ep.annual_return(total_returns)\n\n    summary['Specific\
    \ Sharpe Ratio'] =\\\n        ep.sharpe_ratio(specific_returns)\n\n    summary['Cumulative\
    \ Specific Return'] =\\\n        ep.cum_returns_final(specific_returns)\n    summary['Cumulative\
    \ Common Return'] =\\\n        ep.cum_returns_final(common_returns)\n    summary['Total\
    \ Returns'] =\\\n        ep.cum_returns_final(total_returns)\n\n    summary =\
    \ pd.Series(summary, name='')\n\n    annualized_returns_by_factor = [ep.annual_return(perf_attrib[c])\n\
    \                                    for c in risk_exposures.columns]\n    cumulative_returns_by_factor\
    \ = [ep.cum_returns_final(perf_attrib[c])\n                                  \
    \  for c in risk_exposures.columns]\n\n    risk_exposure_summary = pd.DataFrame(\n\
    \        data=OrderedDict([\n            (\n                'Average Risk Factor\
    \ Exposure',\n                risk_exposures.mean(axis='rows')\n            ),\n\
    \            ('Annualized Return', annualized_returns_by_factor),\n          \
    \  ('Cumulative Return', cumulative_returns_by_factor),\n        ]),\n       \
    \ index=risk_exposures.columns,\n    )\n\n    return summary, risk_exposure_summary"
- source_sentence: _generateEncoderChoicesV1
  sentences:
  - "def common_arg_parser():\n    \"\"\"\n    Create an argparse.ArgumentParser for\
    \ run_mujoco.py.\n    \"\"\"\n    parser = arg_parser()\n    parser.add_argument('--env',\
    \ help='environment ID', type=str, default='Reacher-v2')\n    parser.add_argument('--env_type',\
    \ help='type of environment, used when the environment type cannot be automatically\
    \ determined', type=str)\n    parser.add_argument('--seed', help='RNG seed', type=int,\
    \ default=None)\n    parser.add_argument('--alg', help='Algorithm', type=str,\
    \ default='ppo2')\n    parser.add_argument('--num_timesteps', type=float, default=1e6),\n\
    \    parser.add_argument('--network', help='network type (mlp, cnn, lstm, cnn_lstm,\
    \ conv_only)', default=None)\n    parser.add_argument('--gamestate', help='game\
    \ state to load (so far only used in retro games)', default=None)\n    parser.add_argument('--num_env',\
    \ help='Number of environment copies being run in parallel. When not specified,\
    \ set to number of cpus for Atari, and to 1 for Mujoco', default=None, type=int)\n\
    \    parser.add_argument('--reward_scale', help='Reward scale factor. Default:\
    \ 1.0', default=1.0, type=float)\n    parser.add_argument('--save_path', help='Path\
    \ to save trained model to', default=None, type=str)\n    parser.add_argument('--save_video_interval',\
    \ help='Save video every x steps (0 = disabled)', default=0, type=int)\n    parser.add_argument('--save_video_length',\
    \ help='Length of recorded video. Default: 200', default=200, type=int)\n    parser.add_argument('--play',\
    \ default=False, action='store_true')\n    return parser"
  - "def check_intraday(estimate, returns, positions, transactions):\n    \"\"\"\n\
    \    Logic for checking if a strategy is intraday and processing it.\n\n    Parameters\n\
    \    ----------\n    estimate: boolean or str, optional\n        Approximate returns\
    \ for intraday strategies.\n        See description in tears.create_full_tear_sheet.\n\
    \    returns : pd.Series\n        Daily returns of the strategy, noncumulative.\n\
    \         - See full explanation in create_full_tear_sheet.\n    positions : pd.DataFrame\n\
    \        Daily net position values.\n         - See full explanation in create_full_tear_sheet.\n\
    \    transactions : pd.DataFrame\n        Prices and amounts of executed trades.\
    \ One row per trade.\n         - See full explanation in create_full_tear_sheet.\n\
    \n    Returns\n    -------\n    pd.DataFrame\n        Daily net position values,\
    \ adjusted for intraday movement.\n    \"\"\"\n\n    if estimate == 'infer':\n\
    \        if positions is not None and transactions is not None:\n            if\
    \ detect_intraday(positions, transactions):\n                warnings.warn('Detected\
    \ intraday strategy; inferring positi' +\n                              'ons from\
    \ transactions. Set estimate_intraday' +\n                              '=False\
    \ to disable.')\n                return estimate_intraday(returns, positions,\
    \ transactions)\n            else:\n                return positions\n       \
    \ else:\n            return positions\n\n    elif estimate:\n        if positions\
    \ is not None and transactions is not None:\n            return estimate_intraday(returns,\
    \ positions, transactions)\n        else:\n            raise ValueError('Positions\
    \ and txns needed to estimate intraday')\n    else:\n        return positions"
  - "def _generateEncoderChoicesV1(fieldInfo):\n  \"\"\" Return a list of possible\
    \ encoder parameter combinations for the given\n  field and the default aggregation\
    \ function to use. Each parameter combination\n  is a dict defining the parameters\
    \ for the encoder. Here is an example\n  return value for the encoderChoicesList:\n\
    \n   [\n     None,\n     {'fieldname':'timestamp',\n      'name': 'timestamp_timeOfDay',\n\
    \      'type':'DateEncoder'\n      'dayOfWeek': (7,1)\n      },\n     {'fieldname':'timestamp',\n\
    \      'name': 'timestamp_timeOfDay',\n      'type':'DateEncoder'\n      'dayOfWeek':\
    \ (7,3)\n      },\n  ],\n\n  Parameters:\n  --------------------------------------------------\n\
    \  fieldInfo:      item from the 'includedFields' section of the\n           \
    \         description JSON object\n\n  retval:  (encoderChoicesList, aggFunction)\n\
    \             encoderChoicesList: a list of encoder choice lists for this field.\n\
    \               Most fields will generate just 1 encoder choice list.\n      \
    \         DateTime fields can generate 2 or more encoder choice lists,\n     \
    \            one for dayOfWeek, one for timeOfDay, etc.\n             aggFunction:\
    \ name of aggregation function to use for this\n                           field\
    \ type\n\n  \"\"\"\n\n  width = 7\n  fieldName = fieldInfo['fieldName']\n  fieldType\
    \ = fieldInfo['fieldType']\n  encoderChoicesList = []\n\n  # Scalar?\n  if fieldType\
    \ in ['float', 'int']:\n    aggFunction = 'mean'\n    encoders = [None]\n    for\
    \ n in (13, 50, 150, 500):\n      encoder = dict(type='ScalarSpaceEncoder', name=fieldName,\
    \ fieldname=fieldName,\n                     n=n, w=width, clipInput=True,space=\"\
    absolute\")\n      if 'minValue' in fieldInfo:\n        encoder['minval'] = fieldInfo['minValue']\n\
    \      if 'maxValue' in fieldInfo:\n        encoder['maxval'] = fieldInfo['maxValue']\n\
    \      encoders.append(encoder)\n    encoderChoicesList.append(encoders)\n\n \
    \ # String?\n  elif fieldType == 'string':\n    aggFunction = 'first'\n    encoders\
    \ = [None]\n    encoder = dict(type='SDRCategoryEncoder', name=fieldName,\n  \
    \                 fieldname=fieldName, n=100, w=width)\n    encoders.append(encoder)\n\
    \    encoderChoicesList.append(encoders)\n\n\n  # Datetime?\n  elif fieldType\
    \ == 'datetime':\n    aggFunction = 'first'\n\n    # First, the time of day representation\n\
    \    encoders = [None]\n    for radius in (1, 8):\n      encoder = dict(type='DateEncoder',\
    \ name='%s_timeOfDay' % (fieldName),\n                     fieldname=fieldName,\
    \ timeOfDay=(width, radius))\n      encoders.append(encoder)\n    encoderChoicesList.append(encoders)\n\
    \n    # Now, the day of week representation\n    encoders = [None]\n    for radius\
    \ in (1, 3):\n      encoder = dict(type='DateEncoder', name='%s_dayOfWeek' % (fieldName),\n\
    \                     fieldname=fieldName, dayOfWeek=(width, radius))\n      encoders.append(encoder)\n\
    \    encoderChoicesList.append(encoders)\n\n  else:\n    raise RuntimeError(\"\
    Unsupported field type '%s'\" % (fieldType))\n\n\n  # Return results\n  return\
    \ (encoderChoicesList, aggFunction)"
- source_sentence: leaky_relu6
  sentences:
  - "def list_string_to_dict(string):\n    \"\"\"Inputs ``['a', 'b', 'c']``, returns\
    \ ``{'a': 0, 'b': 1, 'c': 2}``.\"\"\"\n    dictionary = {}\n    for idx, c in\
    \ enumerate(string):\n        dictionary.update({c: idx})\n    return dictionary"
  - "def affine_transform(x, transform_matrix, channel_index=2, fill_mode='nearest',\
    \ cval=0., order=1):\n    \"\"\"Return transformed images by given an affine matrix\
    \ in Scipy format (x is height).\n\n    Parameters\n    ----------\n    x : numpy.array\n\
    \        An image with dimension of [row, col, channel] (default).\n    transform_matrix\
    \ : numpy.array\n        Transform matrix (offset center), can be generated by\
    \ ``transform_matrix_offset_center``\n    channel_index : int\n        Index of\
    \ channel, default 2.\n    fill_mode : str\n        Method to fill missing pixel,\
    \ default `nearest`, more options `constant`, `reflect` or `wrap`, see `scipy\
    \ ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__\n\
    \    cval : float\n        Value used for points outside the boundaries of the\
    \ input if mode='constant'. Default is 0.0\n    order : int\n        The order\
    \ of interpolation. The order has to be in the range 0-5:\n            - 0 Nearest-neighbor\n\
    \            - 1 Bi-linear (default)\n            - 2 Bi-quadratic\n         \
    \   - 3 Bi-cubic\n            - 4 Bi-quartic\n            - 5 Bi-quintic\n   \
    \         - `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__\n\
    \n    Returns\n    -------\n    numpy.array\n        A processed image.\n\n  \
    \  Examples\n    --------\n    >>> M_shear = tl.prepro.affine_shear_matrix(intensity=0.2,\
    \ is_random=False)\n    >>> M_zoom = tl.prepro.affine_zoom_matrix(zoom_range=0.8)\n\
    \    >>> M_combined = M_shear.dot(M_zoom)\n    >>> transform_matrix = tl.prepro.transform_matrix_offset_center(M_combined,\
    \ h, w)\n    >>> result = tl.prepro.affine_transform(image, transform_matrix)\n\
    \n    \"\"\"\n    # transform_matrix = transform_matrix_offset_center()\n    #\
    \ asdihasid\n    # asd\n\n    x = np.rollaxis(x, channel_index, 0)\n    final_affine_matrix\
    \ = transform_matrix[:2, :2]\n    final_offset = transform_matrix[:2, 2]\n   \
    \ channel_images = [\n        ndi.interpolation.\n        affine_transform(x_channel,\
    \ final_affine_matrix, final_offset, order=order, mode=fill_mode, cval=cval)\n\
    \        for x_channel in x\n    ]\n    x = np.stack(channel_images, axis=0)\n\
    \    x = np.rollaxis(x, 0, channel_index + 1)\n    return x"
  - "def leaky_relu6(x, alpha=0.2, name=\"leaky_relu6\"):\n    \"\"\":func:`leaky_relu6`\
    \ can be used through its shortcut: :func:`tl.act.lrelu6`.\n\n    This activation\
    \ function is a modified version :func:`leaky_relu` introduced by the following\
    \ paper:\n    `Rectifier Nonlinearities Improve Neural Network Acoustic Models\
    \ [A. L. Maas et al., 2013] <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`__\n\
    \n    This activation function also follows the behaviour of the activation function\
    \ :func:`tf.nn.relu6` introduced by the following paper:\n    `Convolutional Deep\
    \ Belief Networks on CIFAR-10 [A. Krizhevsky, 2010] <http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf>`__\n\
    \n    The function return the following results:\n      - When x < 0: ``f(x) =\
    \ alpha_low * x``.\n      - When x in [0, 6]: ``f(x) = x``.\n      - When x >\
    \ 6: ``f(x) = 6``.\n\n    Parameters\n    ----------\n    x : Tensor\n       \
    \ Support input type ``float``, ``double``, ``int32``, ``int64``, ``uint8``, ``int16``,\
    \ or ``int8``.\n    alpha : float\n        Slope.\n    name : str\n        The\
    \ function name (optional).\n\n    Examples\n    --------\n    >>> import tensorlayer\
    \ as tl\n    >>> net = tl.layers.DenseLayer(net, 100, act=lambda x : tl.act.leaky_relu6(x,\
    \ 0.2), name='dense')\n\n    Returns\n    -------\n    Tensor\n        A ``Tensor``\
    \ in the same type as ``x``.\n\n    References\n    ----------\n    - `Rectifier\
    \ Nonlinearities Improve Neural Network Acoustic Models [A. L. Maas et al., 2013]\
    \ <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`__\n\
    \    - `Convolutional Deep Belief Networks on CIFAR-10 [A. Krizhevsky, 2010] <http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf>`__\n\
    \    \"\"\"\n    if not isinstance(alpha, tf.Tensor) and not (0 < alpha <= 1):\n\
    \        raise ValueError(\"`alpha` value must be in [0, 1]`\")\n\n    with tf.name_scope(name,\
    \ \"leaky_relu6\") as name_scope:\n        x = tf.convert_to_tensor(x, name=\"\
    features\")\n        return tf.minimum(tf.maximum(x, alpha * x), 6, name=name_scope)"
- source_sentence: LineString.contains
  sentences:
  - "def build_act_with_param_noise(make_obs_ph, q_func, num_actions, scope=\"deepq\"\
    , reuse=None, param_noise_filter_func=None):\n    \"\"\"Creates the act function\
    \ with support for parameter space noise exploration (https://arxiv.org/abs/1706.01905):\n\
    \n    Parameters\n    ----------\n    make_obs_ph: str -> tf.placeholder or TfInput\n\
    \        a function that take a name and creates a placeholder of input with that\
    \ name\n    q_func: (tf.Variable, int, str, bool) -> tf.Variable\n        the\
    \ model that takes the following inputs:\n            observation_in: object\n\
    \                the output of observation placeholder\n            num_actions:\
    \ int\n                number of actions\n            scope: str\n           \
    \ reuse: bool\n                should be passed to outer variable scope\n    \
    \    and returns a tensor of shape (batch_size, num_actions) with values of every\
    \ action.\n    num_actions: int\n        number of actions.\n    scope: str or\
    \ VariableScope\n        optional scope for variable_scope.\n    reuse: bool or\
    \ None\n        whether or not the variables should be reused. To be able to reuse\
    \ the scope must be given.\n    param_noise_filter_func: tf.Variable -> bool\n\
    \        function that decides whether or not a variable should be perturbed.\
    \ Only applicable\n        if param_noise is True. If set to None, default_param_noise_filter\
    \ is used by default.\n\n    Returns\n    -------\n    act: (tf.Variable, bool,\
    \ float, bool, float, bool) -> tf.Variable\n        function to select and action\
    \ given observation.\n`       See the top of the file for details.\n    \"\"\"\
    \n    if param_noise_filter_func is None:\n        param_noise_filter_func = default_param_noise_filter\n\
    \n    with tf.variable_scope(scope, reuse=reuse):\n        observations_ph = make_obs_ph(\"\
    observation\")\n        stochastic_ph = tf.placeholder(tf.bool, (), name=\"stochastic\"\
    )\n        update_eps_ph = tf.placeholder(tf.float32, (), name=\"update_eps\"\
    )\n        update_param_noise_threshold_ph = tf.placeholder(tf.float32, (), name=\"\
    update_param_noise_threshold\")\n        update_param_noise_scale_ph = tf.placeholder(tf.bool,\
    \ (), name=\"update_param_noise_scale\")\n        reset_ph = tf.placeholder(tf.bool,\
    \ (), name=\"reset\")\n\n        eps = tf.get_variable(\"eps\", (), initializer=tf.constant_initializer(0))\n\
    \        param_noise_scale = tf.get_variable(\"param_noise_scale\", (), initializer=tf.constant_initializer(0.01),\
    \ trainable=False)\n        param_noise_threshold = tf.get_variable(\"param_noise_threshold\"\
    , (), initializer=tf.constant_initializer(0.05), trainable=False)\n\n        #\
    \ Unmodified Q.\n        q_values = q_func(observations_ph.get(), num_actions,\
    \ scope=\"q_func\")\n\n        # Perturbable Q used for the actual rollout.\n\
    \        q_values_perturbed = q_func(observations_ph.get(), num_actions, scope=\"\
    perturbed_q_func\")\n        # We have to wrap this code into a function due to\
    \ the way tf.cond() works. See\n        # https://stackoverflow.com/questions/37063952/confused-by-the-behavior-of-tf-cond\
    \ for\n        # a more detailed discussion.\n        def perturb_vars(original_scope,\
    \ perturbed_scope):\n            all_vars = scope_vars(absolute_scope_name(original_scope))\n\
    \            all_perturbed_vars = scope_vars(absolute_scope_name(perturbed_scope))\n\
    \            assert len(all_vars) == len(all_perturbed_vars)\n            perturb_ops\
    \ = []\n            for var, perturbed_var in zip(all_vars, all_perturbed_vars):\n\
    \                if param_noise_filter_func(perturbed_var):\n                \
    \    # Perturb this variable.\n                    op = tf.assign(perturbed_var,\
    \ var + tf.random_normal(shape=tf.shape(var), mean=0., stddev=param_noise_scale))\n\
    \                else:\n                    # Do not perturb, just assign.\n \
    \                   op = tf.assign(perturbed_var, var)\n                perturb_ops.append(op)\n\
    \            assert len(perturb_ops) == len(all_vars)\n            return tf.group(*perturb_ops)\n\
    \n        # Set up functionality to re-compute `param_noise_scale`. This perturbs\
    \ yet another copy\n        # of the network and measures the effect of that perturbation\
    \ in action space. If the perturbation\n        # is too big, reduce scale of\
    \ perturbation, otherwise increase.\n        q_values_adaptive = q_func(observations_ph.get(),\
    \ num_actions, scope=\"adaptive_q_func\")\n        perturb_for_adaption = perturb_vars(original_scope=\"\
    q_func\", perturbed_scope=\"adaptive_q_func\")\n        kl = tf.reduce_sum(tf.nn.softmax(q_values)\
    \ * (tf.log(tf.nn.softmax(q_values)) - tf.log(tf.nn.softmax(q_values_adaptive))),\
    \ axis=-1)\n        mean_kl = tf.reduce_mean(kl)\n        def update_scale():\n\
    \            with tf.control_dependencies([perturb_for_adaption]):\n         \
    \       update_scale_expr = tf.cond(mean_kl < param_noise_threshold,\n       \
    \             lambda: param_noise_scale.assign(param_noise_scale * 1.01),\n  \
    \                  lambda: param_noise_scale.assign(param_noise_scale / 1.01),\n\
    \                )\n            return update_scale_expr\n\n        # Functionality\
    \ to update the threshold for parameter space noise.\n        update_param_noise_threshold_expr\
    \ = param_noise_threshold.assign(tf.cond(update_param_noise_threshold_ph >= 0,\n\
    \            lambda: update_param_noise_threshold_ph, lambda: param_noise_threshold))\n\
    \n        # Put everything together.\n        deterministic_actions = tf.argmax(q_values_perturbed,\
    \ axis=1)\n        batch_size = tf.shape(observations_ph.get())[0]\n        random_actions\
    \ = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64)\n\
    \        chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1,\
    \ dtype=tf.float32) < eps\n        stochastic_actions = tf.where(chose_random,\
    \ random_actions, deterministic_actions)\n\n        output_actions = tf.cond(stochastic_ph,\
    \ lambda: stochastic_actions, lambda: deterministic_actions)\n        update_eps_expr\
    \ = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps))\n\
    \        updates = [\n            update_eps_expr,\n            tf.cond(reset_ph,\
    \ lambda: perturb_vars(original_scope=\"q_func\", perturbed_scope=\"perturbed_q_func\"\
    ), lambda: tf.group(*[])),\n            tf.cond(update_param_noise_scale_ph, lambda:\
    \ update_scale(), lambda: tf.Variable(0., trainable=False)),\n            update_param_noise_threshold_expr,\n\
    \        ]\n        _act = U.function(inputs=[observations_ph, stochastic_ph,\
    \ update_eps_ph, reset_ph, update_param_noise_threshold_ph, update_param_noise_scale_ph],\n\
    \                         outputs=output_actions,\n                         givens={update_eps_ph:\
    \ -1.0, stochastic_ph: True, reset_ph: False, update_param_noise_threshold_ph:\
    \ False, update_param_noise_scale_ph: False},\n                         updates=updates)\n\
    \        def act(ob, reset=False, update_param_noise_threshold=False, update_param_noise_scale=False,\
    \ stochastic=True, update_eps=-1):\n            return _act(ob, stochastic, update_eps,\
    \ reset, update_param_noise_threshold, update_param_noise_scale)\n        return\
    \ act"
  - "def contains(self, other, max_distance=1e-4):\n        \"\"\"\n        Estimate\
    \ whether the bounding box contains a point.\n\n        Parameters\n        ----------\n\
    \        other : tuple of number or imgaug.augmentables.kps.Keypoint\n       \
    \     Point to check for.\n\n        max_distance : float\n            Maximum\
    \ allowed euclidean distance between the point and the\n            closest point\
    \ on the line. If the threshold is exceeded, the point\n            is not considered\
    \ to be contained in the line.\n\n        Returns\n        -------\n        bool\n\
    \            True if the point is contained in the line string, False otherwise.\n\
    \            It is contained if its distance to the line or any of its points\n\
    \            is below a threshold.\n\n        \"\"\"\n        return self.compute_distance(other,\
    \ default=np.inf) < max_distance"
  - "def is_fully_within_image(self, image):\n        \"\"\"\n        Estimate whether\
    \ the bounding box is fully inside the image area.\n\n        Parameters\n   \
    \     ----------\n        image : (H,W,...) ndarray or tuple of int\n        \
    \    Image dimensions to use.\n            If an ndarray, its shape will be used.\n\
    \            If a tuple, it is assumed to represent the image shape\n        \
    \    and must contain at least two integers.\n\n        Returns\n        -------\n\
    \        bool\n            True if the bounding box is fully inside the image\
    \ area. False otherwise.\n\n        \"\"\"\n        shape = normalize_shape(image)\n\
    \        height, width = shape[0:2]\n        return self.x1 >= 0 and self.x2 <\
    \ width and self.y1 >= 0 and self.y2 < height"
- source_sentence: Keypoint.copy
  sentences:
  - "def build_words_dataset(words=None, vocabulary_size=50000, printable=True, unk_key='UNK'):\n\
    \    \"\"\"Build the words dictionary and replace rare words with 'UNK' token.\n\
    \    The most common word has the smallest integer id.\n\n    Parameters\n   \
    \ ----------\n    words : list of str or byte\n        The context in list format.\
    \ You may need to do preprocessing on the words, such as lower case, remove marks\
    \ etc.\n    vocabulary_size : int\n        The maximum vocabulary size, limiting\
    \ the vocabulary size. Then the script replaces rare words with 'UNK' token.\n\
    \    printable : boolean\n        Whether to print the read vocabulary size of\
    \ the given words.\n    unk_key : str\n        Represent the unknown words.\n\n\
    \    Returns\n    --------\n    data : list of int\n        The context in a list\
    \ of ID.\n    count : list of tuple and list\n        Pair words and IDs.\n  \
    \          - count[0] is a list : the number of rare words\n            - count[1:]\
    \ are tuples : the number of occurrence of each word\n            - e.g. [['UNK',\
    \ 418391], (b'the', 1061396), (b'of', 593677), (b'and', 416629), (b'one', 411764)]\n\
    \    dictionary : dictionary\n        It is `word_to_id` that maps word to ID.\n\
    \    reverse_dictionary : a dictionary\n        It is `id_to_word` that maps ID\
    \ to word.\n\n    Examples\n    --------\n    >>> words = tl.files.load_matt_mahoney_text8_dataset()\n\
    \    >>> vocabulary_size = 50000\n    >>> data, count, dictionary, reverse_dictionary\
    \ = tl.nlp.build_words_dataset(words, vocabulary_size)\n\n    References\n   \
    \ -----------------\n    - `tensorflow/examples/tutorials/word2vec/word2vec_basic.py\
    \ <https://github.com/tensorflow/tensorflow/blob/r0.7/tensorflow/examples/tutorials/word2vec/word2vec_basic.py>`__\n\
    \n    \"\"\"\n    if words is None:\n        raise Exception(\"words : list of\
    \ str or byte\")\n\n    count = [[unk_key, -1]]\n    count.extend(collections.Counter(words).most_common(vocabulary_size\
    \ - 1))\n    dictionary = dict()\n    for word, _ in count:\n        dictionary[word]\
    \ = len(dictionary)\n    data = list()\n    unk_count = 0\n    for word in words:\n\
    \        if word in dictionary:\n            index = dictionary[word]\n      \
    \  else:\n            index = 0  # dictionary['UNK']\n            unk_count +=\
    \ 1\n        data.append(index)\n    count[0][1] = unk_count\n    reverse_dictionary\
    \ = dict(zip(dictionary.values(), dictionary.keys()))\n    if printable:\n   \
    \     tl.logging.info('Real vocabulary size    %d' % len(collections.Counter(words).keys()))\n\
    \        tl.logging.info('Limited vocabulary size {}'.format(vocabulary_size))\n\
    \    if len(collections.Counter(words).keys()) < vocabulary_size:\n        raise\
    \ Exception(\n            \"len(collections.Counter(words).keys()) >= vocabulary_size\
    \ , the limited vocabulary_size must be less than or equal to the read vocabulary_size\"\
    \n        )\n    return data, count, dictionary, reverse_dictionary"
  - "def Snowflakes(density=(0.005, 0.075), density_uniformity=(0.3, 0.9), flake_size=(0.2,\
    \ 0.7),\n               flake_size_uniformity=(0.4, 0.8), angle=(-30, 30), speed=(0.007,\
    \ 0.03),\n               name=None, deterministic=False, random_state=None):\n\
    \    \"\"\"\n    Augmenter to add falling snowflakes to images.\n\n    This is\
    \ a wrapper around ``SnowflakesLayer``. It executes 1 to 3 layers per image.\n\
    \n    dtype support::\n\n        * ``uint8``: yes; tested\n        * ``uint16``:\
    \ no (1)\n        * ``uint32``: no (1)\n        * ``uint64``: no (1)\n       \
    \ * ``int8``: no (1)\n        * ``int16``: no (1)\n        * ``int32``: no (1)\n\
    \        * ``int64``: no (1)\n        * ``float16``: no (1)\n        * ``float32``:\
    \ no (1)\n        * ``float64``: no (1)\n        * ``float128``: no (1)\n    \
    \    * ``bool``: no (1)\n\n        - (1) Parameters of this augmenter are optimized\
    \ for the value range of uint8.\n              While other dtypes may be accepted,\
    \ they will lead to images augmented in\n              ways inappropriate for\
    \ the respective dtype.\n\n    Parameters\n    ----------\n    density : number\
    \ or tuple of number or list of number or imgaug.parameters.StochasticParameter\n\
    \        Density of the snowflake layer, as a probability of each pixel in low\
    \ resolution space to be a snowflake.\n        Valid value range is ``(0.0, 1.0)``.\
    \ Recommended to be around ``(0.01, 0.075)``.\n\n            * If a number, then\
    \ that value will be used for all images.\n            * If a tuple ``(a, b)``,\
    \ then a value from the continuous range ``[a, b]`` will be used.\n          \
    \  * If a list, then a random value will be sampled from that list per image.\n\
    \            * If a StochasticParameter, then a value will be sampled per image\
    \ from that parameter.\n\n    density_uniformity : number or tuple of number or\
    \ list of number or imgaug.parameters.StochasticParameter\n        Size uniformity\
    \ of the snowflakes. Higher values denote more similarly sized snowflakes.\n \
    \       Valid value range is ``(0.0, 1.0)``. Recommended to be around ``0.5``.\n\
    \n            * If a number, then that value will be used for all images.\n  \
    \          * If a tuple ``(a, b)``, then a value from the continuous range ``[a,\
    \ b]`` will be used.\n            * If a list, then a random value will be sampled\
    \ from that list per image.\n            * If a StochasticParameter, then a value\
    \ will be sampled per image from that parameter.\n\n    flake_size : number or\
    \ tuple of number or list of number or imgaug.parameters.StochasticParameter\n\
    \        Size of the snowflakes. This parameter controls the resolution at which\
    \ snowflakes are sampled.\n        Higher values mean that the resolution is closer\
    \ to the input image's resolution and hence each sampled\n        snowflake will\
    \ be smaller (because of the smaller pixel size).\n\n        Valid value range\
    \ is ``[0.0, 1.0)``. Recommended values:\n\n            * On ``96x128`` a value\
    \ of ``(0.1, 0.4)`` worked well.\n            * On ``192x256`` a value of ``(0.2,\
    \ 0.7)`` worked well.\n            * On ``960x1280`` a value of ``(0.7, 0.95)``\
    \ worked well.\n\n        Allowed datatypes:\n\n            * If a number, then\
    \ that value will be used for all images.\n            * If a tuple ``(a, b)``,\
    \ then a value from the continuous range ``[a, b]`` will be used.\n          \
    \  * If a list, then a random value will be sampled from that list per image.\n\
    \            * If a StochasticParameter, then a value will be sampled per image\
    \ from that parameter.\n\n    flake_size_uniformity : number or tuple of number\
    \ or list of number or imgaug.parameters.StochasticParameter\n        Controls\
    \ the size uniformity of the snowflakes. Higher values mean that the snowflakes\
    \ are more similarly\n        sized. Valid value range is ``(0.0, 1.0)``. Recommended\
    \ to be around ``0.5``.\n\n            * If a number, then that value will be\
    \ used for all images.\n            * If a tuple ``(a, b)``, then a value from\
    \ the continuous range ``[a, b]`` will be used.\n            * If a list, then\
    \ a random value will be sampled from that list per image.\n            * If a\
    \ StochasticParameter, then a value will be sampled per image from that parameter.\n\
    \n    angle : number or tuple of number or list of number or imgaug.parameters.StochasticParameter\n\
    \        Angle in degrees of motion blur applied to the snowflakes, where ``0.0``\
    \ is motion blur that points straight\n        upwards. Recommended to be around\
    \ ``(-30, 30)``.\n        See also :func:`imgaug.augmenters.blur.MotionBlur.__init__`.\n\
    \n            * If a number, then that value will be used for all images.\n  \
    \          * If a tuple ``(a, b)``, then a value from the continuous range ``[a,\
    \ b]`` will be used.\n            * If a list, then a random value will be sampled\
    \ from that list per image.\n            * If a StochasticParameter, then a value\
    \ will be sampled per image from that parameter.\n\n    speed : number or tuple\
    \ of number or list of number or imgaug.parameters.StochasticParameter\n     \
    \   Perceived falling speed of the snowflakes. This parameter controls the motion\
    \ blur's kernel size.\n        It follows roughly the form ``kernel_size = image_size\
    \ * speed``. Hence,\n        Values around ``1.0`` denote that the motion blur\
    \ should \"stretch\" each snowflake over the whole image.\n\n        Valid value\
    \ range is ``(0.0, 1.0)``. Recommended values:\n\n            * On ``96x128``\
    \ a value of ``(0.01, 0.05)`` worked well.\n            * On ``192x256`` a value\
    \ of ``(0.007, 0.03)`` worked well.\n            * On ``960x1280`` a value of\
    \ ``(0.001, 0.03)`` worked well.\n\n\n        Allowed datatypes:\n\n         \
    \   * If a number, then that value will be used for all images.\n            *\
    \ If a tuple ``(a, b)``, then a value from the continuous range ``[a, b]`` will\
    \ be used.\n            * If a list, then a random value will be sampled from\
    \ that list per image.\n            * If a StochasticParameter, then a value will\
    \ be sampled per image from that parameter.\n\n    name : None or str, optional\n\
    \        See :func:`imgaug.augmenters.meta.Augmenter.__init__`.\n\n    deterministic\
    \ : bool, optional\n        See :func:`imgaug.augmenters.meta.Augmenter.__init__`.\n\
    \n    random_state : None or int or numpy.random.RandomState, optional\n     \
    \   See :func:`imgaug.augmenters.meta.Augmenter.__init__`.\n\n    Examples\n \
    \   --------\n    >>> aug = iaa.Snowflakes(flake_size=(0.1, 0.4), speed=(0.01,\
    \ 0.05))\n\n    Adds snowflakes to small images (around ``96x128``).\n\n    >>>\
    \ aug = iaa.Snowflakes(flake_size=(0.2, 0.7), speed=(0.007, 0.03))\n\n    Adds\
    \ snowflakes to medium-sized images (around ``192x256``).\n\n    >>> aug = iaa.Snowflakes(flake_size=(0.7,\
    \ 0.95), speed=(0.001, 0.03))\n\n    Adds snowflakes to large images (around ``960x1280``).\n\
    \n    \"\"\"\n    if name is None:\n        name = \"Unnamed%s\" % (ia.caller_name(),)\n\
    \n    layer = SnowflakesLayer(\n        density=density, density_uniformity=density_uniformity,\n\
    \        flake_size=flake_size, flake_size_uniformity=flake_size_uniformity,\n\
    \        angle=angle, speed=speed,\n        blur_sigma_fraction=(0.0001, 0.001)\n\
    \    )\n\n    return meta.SomeOf(\n        (1, 3), children=[layer.deepcopy()\
    \ for _ in range(3)],\n        random_order=False, name=name, deterministic=deterministic,\
    \ random_state=random_state\n    )"
  - "def copy(self, x=None, y=None):\n        \"\"\"\n        Create a shallow copy\
    \ of the Keypoint object.\n\n        Parameters\n        ----------\n        x\
    \ : None or number, optional\n            Coordinate of the keypoint on the x\
    \ axis.\n            If ``None``, the instance's value will be copied.\n\n   \
    \     y : None or number, optional\n            Coordinate of the keypoint on\
    \ the y axis.\n            If ``None``, the instance's value will be copied.\n\
    \n        Returns\n        -------\n        imgaug.Keypoint\n            Shallow\
    \ copy.\n\n        \"\"\"\n        return self.deepcopy(x=x, y=y)"
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev
      type: sts-dev
    metrics:
    - type: pearson_cosine
      value: 0.8806072274141987
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8810194487011652
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8780911558324747
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8798257355327418
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8794084495321427
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8810194487011652
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8806072253861965
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8810194487011652
      name: Spearman Dot
    - type: pearson_max
      value: 0.8806072274141987
      name: Pearson Max
    - type: spearman_max
      value: 0.8810194487011652
      name: Spearman Max
---

# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the [code-search-net/code_search_net](https://huggingface.co/datasets/code-search-net/code_search_net) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [code-search-net/code_search_net](https://huggingface.co/datasets/code-search-net/code_search_net)
- **Language:** code
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("BoghdadyJR/al-MiniLM-L6-v2")
# Run inference
sentences = [
    'Keypoint.copy',
    'def copy(self, x=None, y=None):\n        """\n        Create a shallow copy of the Keypoint object.\n\n        Parameters\n        ----------\n        x : None or number, optional\n            Coordinate of the keypoint on the x axis.\n            If ``None``, the instance\'s value will be copied.\n\n        y : None or number, optional\n            Coordinate of the keypoint on the y axis.\n            If ``None``, the instance\'s value will be copied.\n\n        Returns\n        -------\n        imgaug.Keypoint\n            Shallow copy.\n\n        """\n        return self.deepcopy(x=x, y=y)',
    'def build_words_dataset(words=None, vocabulary_size=50000, printable=True, unk_key=\'UNK\'):\n    """Build the words dictionary and replace rare words with \'UNK\' token.\n    The most common word has the smallest integer id.\n\n    Parameters\n    ----------\n    words : list of str or byte\n        The context in list format. You may need to do preprocessing on the words, such as lower case, remove marks etc.\n    vocabulary_size : int\n        The maximum vocabulary size, limiting the vocabulary size. Then the script replaces rare words with \'UNK\' token.\n    printable : boolean\n        Whether to print the read vocabulary size of the given words.\n    unk_key : str\n        Represent the unknown words.\n\n    Returns\n    --------\n    data : list of int\n        The context in a list of ID.\n    count : list of tuple and list\n        Pair words and IDs.\n            - count[0] is a list : the number of rare words\n            - count[1:] are tuples : the number of occurrence of each word\n            - e.g. [[\'UNK\', 418391], (b\'the\', 1061396), (b\'of\', 593677), (b\'and\', 416629), (b\'one\', 411764)]\n    dictionary : dictionary\n        It is `word_to_id` that maps word to ID.\n    reverse_dictionary : a dictionary\n        It is `id_to_word` that maps ID to word.\n\n    Examples\n    --------\n    >>> words = tl.files.load_matt_mahoney_text8_dataset()\n    >>> vocabulary_size = 50000\n    >>> data, count, dictionary, reverse_dictionary = tl.nlp.build_words_dataset(words, vocabulary_size)\n\n    References\n    -----------------\n    - `tensorflow/examples/tutorials/word2vec/word2vec_basic.py <https://github.com/tensorflow/tensorflow/blob/r0.7/tensorflow/examples/tutorials/word2vec/word2vec_basic.py>`__\n\n    """\n    if words is None:\n        raise Exception("words : list of str or byte")\n\n    count = [[unk_key, -1]]\n    count.extend(collections.Counter(words).most_common(vocabulary_size - 1))\n    dictionary = dict()\n    for word, _ in count:\n        dictionary[word] = len(dictionary)\n    data = list()\n    unk_count = 0\n    for word in words:\n        if word in dictionary:\n            index = dictionary[word]\n        else:\n            index = 0  # dictionary[\'UNK\']\n            unk_count += 1\n        data.append(index)\n    count[0][1] = unk_count\n    reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))\n    if printable:\n        tl.logging.info(\'Real vocabulary size    %d\' % len(collections.Counter(words).keys()))\n        tl.logging.info(\'Limited vocabulary size {}\'.format(vocabulary_size))\n    if len(collections.Counter(words).keys()) < vocabulary_size:\n        raise Exception(\n            "len(collections.Counter(words).keys()) >= vocabulary_size , the limited vocabulary_size must be less than or equal to the read vocabulary_size"\n        )\n    return data, count, dictionary, reverse_dictionary',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| pearson_cosine      | 0.8806    |
| **spearman_cosine** | **0.881** |
| pearson_manhattan   | 0.8781    |
| spearman_manhattan  | 0.8798    |
| pearson_euclidean   | 0.8794    |
| spearman_euclidean  | 0.881     |
| pearson_dot         | 0.8806    |
| spearman_dot        | 0.881     |
| pearson_max         | 0.8806    |
| spearman_max        | 0.881     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### code-search-net/code_search_net

* Dataset: [code-search-net/code_search_net](https://huggingface.co/datasets/code-search-net/code_search_net)
* Size: 20,000 training samples
* Columns: <code>func_name</code> and <code>whole_func_string</code>
* Approximate statistics based on the first 1000 samples:
  |         | func_name                                                                        | whole_func_string                                                                   |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              |
  | details | <ul><li>min: 3 tokens</li><li>mean: 8.18 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 38 tokens</li><li>mean: 192.0 tokens</li><li>max: 384 tokens</li></ul> |
* Samples:
  | func_name                                                          | whole_func_string                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
  |:-------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>ImageGraphCut.__msgc_step3_discontinuity_localization</code> | <code>def __msgc_step3_discontinuity_localization(self):<br>        """<br>        Estimate discontinuity in basis of low resolution image segmentation.<br>        :return: discontinuity in low resolution<br>        """<br>        import scipy<br><br>        start = self._start_time<br>        seg = 1 - self.segmentation.astype(np.int8)<br>        self.stats["low level object voxels"] = np.sum(seg)<br>        self.stats["low level image voxels"] = np.prod(seg.shape)<br>        # in seg is now stored low resolution segmentation<br>        # back to normal parameters<br>        # step 2: discontinuity localization<br>        # self.segparams = sparams_hi<br>        seg_border = scipy.ndimage.filters.laplace(seg, mode="constant")<br>        logger.debug("seg_border: %s", scipy.stats.describe(seg_border, axis=None))<br>        # logger.debug(str(np.max(seg_border)))<br>        # logger.debug(str(np.min(seg_border)))<br>        seg_border[seg_border != 0] = 1<br>        logger.debug("seg_border: %s", scipy.stats.describe(seg_border, axis=None))<br>        # scipy.ndimage.morphology.distance_transform_edt<br>        boundary_dilatation_distance = self.segparams["boundary_dilatation_distance"]<br>        seg = scipy.ndimage.morphology.binary_dilation(<br>            seg_border,<br>            # seg,<br>            np.ones(<br>                [<br>                    (boundary_dilatation_distance * 2) + 1,<br>                    (boundary_dilatation_distance * 2) + 1,<br>                    (boundary_dilatation_distance * 2) + 1,<br>                ]<br>            ),<br>        )<br>        if self.keep_temp_properties:<br>            self.temp_msgc_lowres_discontinuity = seg<br>        else:<br>            self.temp_msgc_lowres_discontinuity = None<br><br>        if self.debug_images:<br>            import sed3<br><br>            pd = sed3.sed3(seg_border)  # ), contour=seg)<br>            pd.show()<br>            pd = sed3.sed3(seg)  # ), contour=seg)<br>            pd.show()<br>        # segzoom = scipy.ndimage.interpolation.zoom(seg.astype('float'), zoom,<br>        #                                                order=0).astype('int8')<br>        self.stats["t3"] = time.time() - start<br>        return seg</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
  | <code>ImageGraphCut.__multiscale_gc_lo2hi_run</code>               | <code>def __multiscale_gc_lo2hi_run(self):  # , pyed):<br>        """<br>        Run Graph-Cut segmentation with refinement of low resolution multiscale graph.<br>        In first step is performed normal GC on low resolution data<br>        Second step construct finer grid on edges of segmentation from first<br>        step.<br>        There is no option for use without `use_boundary_penalties`<br>        """<br>        # from PyQt4.QtCore import pyqtRemoveInputHook<br>        # pyqtRemoveInputHook()<br>        self._msgc_lo2hi_resize_init()<br>        self.__msgc_step0_init()<br><br>        hard_constraints = self.__msgc_step12_low_resolution_segmentation()<br>        # ===== high resolution data processing<br>        seg = self.__msgc_step3_discontinuity_localization()<br><br>        self.stats["t3.1"] = (time.time() - self._start_time)<br>        graph = Graph(<br>            seg,<br>            voxelsize=self.voxelsize,<br>            nsplit=self.segparams["block_size"],<br>            edge_weight_table=self._msgc_npenalty_table,<br>            compute_low_nodes_index=True,<br>        )<br><br>        # graph.run() = graph.generate_base_grid() + graph.split_voxels()<br>        # graph.run()<br>        graph.generate_base_grid()<br>        self.stats["t3.2"] = (time.time() - self._start_time)<br>        graph.split_voxels()<br><br>        self.stats["t3.3"] = (time.time() - self._start_time)<br><br>        self.stats.update(graph.stats)<br>        self.stats["t4"] = (time.time() - self._start_time)<br>        mul_mask, mul_val = self.__msgc_tlinks_area_weight_from_low_segmentation(seg)<br>        area_weight = 1<br>        unariesalt = self.__create_tlinks(<br>            self.img,<br>            self.voxelsize,<br>            self.seeds,<br>            area_weight=area_weight,<br>            hard_constraints=hard_constraints,<br>            mul_mask=None,<br>            mul_val=None,<br>        )<br>        # N-links prepared<br>        self.stats["t5"] = (time.time() - self._start_time)<br>        un, ind = np.unique(graph.msinds, return_index=True)<br>        self.stats["t6"] = (time.time() - self._start_time)<br><br>        self.stats["t7"] = (time.time() - self._start_time)<br>        unariesalt2_lo2hi = np.hstack(<br>            [unariesalt[ind, 0, 0].reshape(-1, 1), unariesalt[ind, 0, 1].reshape(-1, 1)]<br>        )<br>        nlinks_lo2hi = np.hstack([graph.edges, graph.edges_weights.reshape(-1, 1)])<br>        if self.debug_images:<br>            import sed3<br><br>            ed = sed3.sed3(unariesalt[:, :, 0].reshape(self.img.shape))<br>            ed.show()<br>            import sed3<br><br>            ed = sed3.sed3(unariesalt[:, :, 1].reshape(self.img.shape))<br>            ed.show()<br>            # ed = sed3.sed3(seg)<br>            # ed.show()<br>            # import sed3<br>            # ed = sed3.sed3(graph.data)<br>            # ed.show()<br>            # import sed3<br>            # ed = sed3.sed3(graph.msinds)<br>            # ed.show()<br><br>        # nlinks, unariesalt2, msinds = self.__msgc_step45678_construct_graph(area_weight, hard_constraints, seg)<br>        # self.__msgc_step9_finish_perform_gc_and_reshape(nlinks, unariesalt2, msinds)<br>        self.__msgc_step9_finish_perform_gc_and_reshape(<br>            nlinks_lo2hi, unariesalt2_lo2hi, graph.msinds<br>        )<br>        self._msgc_lo2hi_resize_clean_finish()</code> |
  | <code>ImageGraphCut.__multiscale_gc_hi2lo_run</code>               | <code>def __multiscale_gc_hi2lo_run(self):  # , pyed):<br>        """<br>        Run Graph-Cut segmentation with simplifiyng of high resolution multiscale graph.<br>        In first step is performed normal GC on low resolution data<br>        Second step construct finer grid on edges of segmentation from first<br>        step.<br>        There is no option for use without `use_boundary_penalties`<br>        """<br>        # from PyQt4.QtCore import pyqtRemoveInputHook<br>        # pyqtRemoveInputHook()<br><br>        self.__msgc_step0_init()<br>        hard_constraints = self.__msgc_step12_low_resolution_segmentation()<br>        # ===== high resolution data processing<br>        seg = self.__msgc_step3_discontinuity_localization()<br>        nlinks, unariesalt2, msinds = self.__msgc_step45678_hi2lo_construct_graph(<br>            hard_constraints, seg<br>        )<br>        self.__msgc_step9_finish_perform_gc_and_reshape(nlinks, unariesalt2, msinds)</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### code-search-net/code_search_net

* Dataset: [code-search-net/code_search_net](https://huggingface.co/datasets/code-search-net/code_search_net)
* Size: 15,000 evaluation samples
* Columns: <code>func_name</code> and <code>whole_func_string</code>
* Approximate statistics based on the first 1000 samples:
  |         | func_name                                                                        | whole_func_string                                                                    |
  |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                               |
  | details | <ul><li>min: 3 tokens</li><li>mean: 9.23 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 50 tokens</li><li>mean: 276.31 tokens</li><li>max: 384 tokens</li></ul> |
* Samples:
  | func_name                        | whole_func_string                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
  |:---------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>learn</code>               | <code>def learn(env,<br>          network,<br>          seed=None,<br>          lr=5e-4,<br>          total_timesteps=100000,<br>          buffer_size=50000,<br>          exploration_fraction=0.1,<br>          exploration_final_eps=0.02,<br>          train_freq=1,<br>          batch_size=32,<br>          print_freq=100,<br>          checkpoint_freq=10000,<br>          checkpoint_path=None,<br>          learning_starts=1000,<br>          gamma=1.0,<br>          target_network_update_freq=500,<br>          prioritized_replay=False,<br>          prioritized_replay_alpha=0.6,<br>          prioritized_replay_beta0=0.4,<br>          prioritized_replay_beta_iters=None,<br>          prioritized_replay_eps=1e-6,<br>          param_noise=False,<br>          callback=None,<br>          load_path=None,<br>          **network_kwargs<br>            ):<br>    """Train a deepq model.<br><br>    Parameters<br>    -------<br>    env: gym.Env<br>        environment to train on<br>    network: string or a function<br>        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models<br>        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which<br>        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)<br>    seed: int or None<br>        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.<br>    lr: float<br>        learning rate for adam optimizer<br>    total_timesteps: int<br>        number of env steps to optimizer for<br>    buffer_size: int<br>        size of the replay buffer<br>    exploration_fraction: float<br>        fraction of entire training period over which the exploration rate is annealed<br>    exploration_final_eps: float<br>        final value of random action probability<br>    train_freq: int<br>        update the model every `train_freq` steps.<br>        set to None to disable printing<br>    batch_size: int<br>        size of a batched sampled from replay buffer for training<br>    print_freq: int<br>        how often to print out training progress<br>        set to None to disable printing<br>    checkpoint_freq: int<br>        how often to save the model. This is so that the best version is restored<br>        at the end of the training. If you do not wish to restore the best version at<br>        the end of the training set this variable to None.<br>    learning_starts: int<br>        how many steps of the model to collect transitions for before learning starts<br>    gamma: float<br>        discount factor<br>    target_network_update_freq: int<br>        update the target network every `target_network_update_freq` steps.<br>    prioritized_replay: True<br>        if True prioritized replay buffer will be used.<br>    prioritized_replay_alpha: float<br>        alpha parameter for prioritized replay buffer<br>    prioritized_replay_beta0: float<br>        initial value of beta for prioritized replay buffer<br>    prioritized_replay_beta_iters: int<br>        number of iterations over which beta will be annealed from initial value<br>        to 1.0. If set to None equals to total_timesteps.<br>    prioritized_replay_eps: float<br>        epsilon to add to the TD errors when updating priorities.<br>    param_noise: bool<br>        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)<br>    callback: (locals, globals) -> None<br>        function called at every steps with state of the algorithm.<br>        If callback returns true training stops.<br>    load_path: str<br>        path to load the model from. (default: None)<br>    **network_kwargs<br>        additional keyword arguments to pass to the network builder.<br><br>    Returns<br>    -------<br>    act: ActWrapper<br>        Wrapper over act function. Adds ability to save it and load it.<br>        See header of baselines/deepq/categorical.py for details on the act function.<br>    """<br>    # Create all the functions necessary to train the model<br><br>    sess = get_session()<br>    set_global_seeds(seed)<br><br>    q_func = build_q_func(network, **network_kwargs)<br><br>    # capture the shape outside the closure so that the env object is not serialized<br>    # by cloudpickle when serializing make_obs_ph<br><br>    observation_space = env.observation_space<br>    def make_obs_ph(name):<br>        return ObservationInput(observation_space, name=name)<br><br>    act, train, update_target, debug = deepq.build_train(<br>        make_obs_ph=make_obs_ph,<br>        q_func=q_func,<br>        num_actions=env.action_space.n,<br>        optimizer=tf.train.AdamOptimizer(learning_rate=lr),<br>        gamma=gamma,<br>        grad_norm_clipping=10,<br>        param_noise=param_noise<br>    )<br><br>    act_params = {<br>        'make_obs_ph': make_obs_ph,<br>        'q_func': q_func,<br>        'num_actions': env.action_space.n,<br>    }<br><br>    act = ActWrapper(act, act_params)<br><br>    # Create the replay buffer<br>    if prioritized_replay:<br>        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)<br>        if prioritized_replay_beta_iters is None:<br>            prioritized_replay_beta_iters = total_timesteps<br>        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,<br>                                       initial_p=prioritized_replay_beta0,<br>                                       final_p=1.0)<br>    else:<br>        replay_buffer = ReplayBuffer(buffer_size)<br>        beta_schedule = None<br>    # Create the schedule for exploration starting from 1.<br>    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps),<br>                                 initial_p=1.0,<br>                                 final_p=exploration_final_eps)<br><br>    # Initialize the parameters and copy them to the target network.<br>    U.initialize()<br>    update_target()<br><br>    episode_rewards = [0.0]<br>    saved_mean_reward = None<br>    obs = env.reset()<br>    reset = True<br><br>    with tempfile.TemporaryDirectory() as td:<br>        td = checkpoint_path or td<br><br>        model_file = os.path.join(td, "model")<br>        model_saved = False<br><br>        if tf.train.latest_checkpoint(td) is not None:<br>            load_variables(model_file)<br>            logger.log('Loaded model from {}'.format(model_file))<br>            model_saved = True<br>        elif load_path is not None:<br>            load_variables(load_path)<br>            logger.log('Loaded model from {}'.format(load_path))<br><br><br>        for t in range(total_timesteps):<br>            if callback is not None:<br>                if callback(locals(), globals()):<br>                    break<br>            # Take action and update exploration to the newest value<br>            kwargs = {}<br>            if not param_noise:<br>                update_eps = exploration.value(t)<br>                update_param_noise_threshold = 0.<br>            else:<br>                update_eps = 0.<br>                # Compute the threshold such that the KL divergence between perturbed and non-perturbed<br>                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).<br>                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017<br>                # for detailed explanation.<br>                update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n))<br>                kwargs['reset'] = reset<br>                kwargs['update_param_noise_threshold'] = update_param_noise_threshold<br>                kwargs['update_param_noise_scale'] = True<br>            action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]<br>            env_action = action<br>            reset = False<br>            new_obs, rew, done, _ = env.step(env_action)<br>            # Store transition in the replay buffer.<br>            replay_buffer.add(obs, action, rew, new_obs, float(done))<br>            obs = new_obs<br><br>            episode_rewards[-1] += rew<br>            if done:<br>                obs = env.reset()<br>                episode_rewards.append(0.0)<br>                reset = True<br><br>            if t > learning_starts and t % train_freq == 0:<br>                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.<br>                if prioritized_replay:<br>                    experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))<br>                    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience<br>                else:<br>                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)<br>                    weights, batch_idxes = np.ones_like(rewards), None<br>                td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)<br>                if prioritized_replay:<br>                    new_priorities = np.abs(td_errors) + prioritized_replay_eps<br>                    replay_buffer.update_priorities(batch_idxes, new_priorities)<br><br>            if t > learning_starts and t % target_network_update_freq == 0:<br>                # Update target network periodically.<br>                update_target()<br><br>            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)<br>            num_episodes = len(episode_rewards)<br>            if done and print_freq is not None and len(episode_rewards) % print_freq == 0:<br>                logger.record_tabular("steps", t)<br>                logger.record_tabular("episodes", num_episodes)<br>                logger.record_tabular("mean 100 episode reward", mean_100ep_reward)<br>                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))<br>                logger.dump_tabular()<br><br>            if (checkpoint_freq is not None and t > learning_starts and<br>                    num_episodes > 100 and t % checkpoint_freq == 0):<br>                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:<br>                    if print_freq is not None:<br>                        logger.log("Saving model due to mean reward increase: {} -> {}".format(<br>                                   saved_mean_reward, mean_100ep_reward))<br>                    save_variables(model_file)<br>                    model_saved = True<br>                    saved_mean_reward = mean_100ep_reward<br>        if model_saved:<br>            if print_freq is not None:<br>                logger.log("Restored model with mean reward: {}".format(saved_mean_reward))<br>            load_variables(model_file)<br><br>    return act</code> |
  | <code>ActWrapper.save_act</code> | <code>def save_act(self, path=None):<br>        """Save model to a pickle located at `path`"""<br>        if path is None:<br>            path = os.path.join(logger.get_dir(), "model.pkl")<br><br>        with tempfile.TemporaryDirectory() as td:<br>            save_variables(os.path.join(td, "model"))<br>            arc_name = os.path.join(td, "packed.zip")<br>            with zipfile.ZipFile(arc_name, 'w') as zipf:<br>                for root, dirs, files in os.walk(td):<br>                    for fname in files:<br>                        file_path = os.path.join(root, fname)<br>                        if file_path != arc_name:<br>                            zipf.write(file_path, os.path.relpath(file_path, td))<br>            with open(arc_name, "rb") as f:<br>                model_data = f.read()<br>        with open(path, "wb") as f:<br>            cloudpickle.dump((model_data, self._act_params), f)</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
  | <code>nature_cnn</code>          | <code>def nature_cnn(unscaled_images, **conv_kwargs):<br>    """<br>    CNN from Nature paper.<br>    """<br>    scaled_images = tf.cast(unscaled_images, tf.float32) / 255.<br>    activ = tf.nn.relu<br>    h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2),<br>                   **conv_kwargs))<br>    h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs))<br>    h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs))<br>    h3 = conv_to_fc(h3)<br>    return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch | Step | Training Loss | loss   | sts-dev_spearman_cosine |
|:-----:|:----:|:-------------:|:------:|:-----------------------:|
| 0     | 0    | -             | -      | 0.8810                  |
| 0.08  | 100  | 0.4124        | 0.2191 | -                       |
| 0.16  | 200  | 0.108         | 0.0993 | -                       |
| 0.24  | 300  | 0.127         | 0.0756 | -                       |
| 0.32  | 400  | 0.0728        | -      | -                       |
| 0.08  | 100  | 0.0662        | 0.0683 | -                       |
| 0.16  | 200  | 0.0321        | 0.0660 | -                       |
| 0.24  | 300  | 0.0815        | 0.0584 | -                       |
| 0.32  | 400  | 0.049         | 0.0591 | -                       |
| 0.4   | 500  | 0.0636        | 0.0612 | -                       |
| 0.48  | 600  | 0.0929        | 0.0577 | -                       |
| 0.56  | 700  | 0.0342        | 0.0568 | -                       |
| 0.64  | 800  | 0.0265        | 0.0572 | -                       |
| 0.72  | 900  | 0.0406        | 0.0551 | -                       |
| 0.8   | 1000 | 0.039         | 0.0549 | -                       |
| 0.88  | 1100 | 0.0376        | 0.0551 | -                       |
| 0.96  | 1200 | 0.0823        | 0.0556 | -                       |


### Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.42.3
- PyTorch: 2.1.2
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->