File size: 2,199 Bytes
d5fa8cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: llama2
library_name: peft
tags:
- generated_from_trainer
base_model: codellama/CodeLlama-7b-hf
model-index:
- name: codellama-7b-openapi-completion-ctx-lvl-fim-05-spm-2048
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/bohdan-petryshyn/huggingface/runs/5n8v36we)
# codellama-7b-openapi-completion-ctx-lvl-fim-05-spm-2048
This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6230
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.565 | 0.1 | 100 | 0.6378 |
| 0.4333 | 0.2 | 200 | 0.6510 |
| 0.2143 | 0.3 | 300 | 0.6492 |
| 0.5989 | 0.4 | 400 | 0.6225 |
| 0.4088 | 0.5 | 500 | 0.6230 |
| 0.3385 | 0.6 | 600 | 0.6325 |
| 0.644 | 0.7 | 700 | 0.6205 |
| 0.4412 | 0.8 | 800 | 0.6138 |
| 0.6179 | 0.9 | 900 | 0.6195 |
| 0.3764 | 1.0 | 1000 | 0.6230 |
### Framework versions
- PEFT 0.10.1.dev0
- Transformers 4.41.0.dev0
- Pytorch 2.2.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |