File size: 1,687 Bytes
80882b8 5e22908 80882b8 5e22908 80882b8 5e22908 febe058 5e22908 febe058 5e22908 febe058 5e22908 febe058 5e22908 febe058 5e22908 febe058 5e22908 febe058 5e22908 febe058 5e22908 febe058 5e22908 febe058 5e22908 febe058 5e22908 febe058 5e22908 febe058 5e22908 febe058 5e22908 febe058 5e22908 febe058 5e22908 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
language:
- nl
license: mit
base_model: microsoft/speecht5_tts
tags:
- text-to-speech
- generated_from_trainer
datasets:
- facebook/voxpopuli
model-index:
- name: Bolakubus/speecht5_finetuned_voxpopuli_nl
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Bolakubus/speecht5_finetuned_voxpopuli_nl
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4506
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.4998 | 4.3 | 1000 | 0.4638 |
| 0.4741 | 8.61 | 2000 | 0.4529 |
| 0.4747 | 12.91 | 3000 | 0.4506 |
### Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
|