--- datasets: - atlasia/No-Arabic-Dialect-Left-Behind language: - ar metrics: - accuracy - f1 - recall pipeline_tag: text-classification library_name: fasttext --- # Sfaya-Moroccan-Darija-vs-All This repository contains a FastText model trained for Moroccan dialect identification. The model achieves a precicion and recall of 0.94 on the atlasia/No-Arabic-Dialect-Left-Behind-v3 test dataset. It achieves the following performances: | Label | F1 Score | Precision Score | Recall Score | False Positive Rate | |----------|----------|-----------------|--------------|----------------------| | Morocco | 0.8986 | 0.9166 | 0.8812 | 0.0129 | | Other | 0.9841 | 0.9811 | 0.9871 | 0.1188 | Try the model using the following: ```python import fasttext from huggingface_hub import hf_hub_download # download model and get the model path model_path = hf_hub_download(repo_id="atlasia/Sfaya-Moroccan-Darija-vs-All", filename="model_binary_v3_1fpr.bin", cache_dir=None) # load the model model = fasttext.load_model(model_path) # Predict with the model texts = ["!! رقية بنت محمد"] predictions = model.predict(texts) print(predictions) ``` Happy testing! :)