Boyem commited on
Commit
5c25e91
1 Parent(s): 86d5cb9

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.61 +/- 1.32
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35228310625eb9afaf43dc57cf46fe3b4cfe835f973de4d1ceefb0bd7d82389c
3
+ size 108089
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78bbff5cbd00>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x78bbff5d0d80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1708705629240382925,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXD+ePlQx9D7740Y/lQxxv1YyCkBmHGDAbWOmvziFsz+j5Ya/IOPOv2eUsr8TcIRAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA80oGP1HBbT82kx4/H65lP7VNlj+kJJm/RXbCv/dbyD9Pr3S8+SHGv+3LH7/gJss/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABcP54+VDH0PvvjRj/D1oI/yCfRPyTWqT+VDHG/VjIKQGYcYMBzFd4+6ue6vtuCwT5tY6a/OIWzP6Plhr9pcou/BEh9P1uJZ74g486/Z5SyvxNwhEDKYrw/9M2mPktRoz+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 0.30907714 0.47693884 0.7769162 ]\n [-0.94159824 2.1593223 -3.5017333 ]\n [-1.2999092 1.402503 -1.053883 ]\n [-1.6163063 -1.3951539 4.138681 ]]",
34
+ "desired_goal": "[[ 0.52458113 0.928731 0.61943376]\n [ 0.8971881 1.1742464 -1.1964307 ]\n [-1.5192343 1.5653065 -0.01493437]\n [-1.5479118 -0.6242054 1.5871239 ]]",
35
+ "observation": "[[ 0.30907714 0.47693884 0.7769162 1.022179 1.6340265 1.3268476 ]\n [-0.94159824 2.1593223 -3.5017333 0.4337574 -0.3650506 0.37795147]\n [-1.2999092 1.402503 -1.053883 -1.089429 0.9893801 -0.2261099 ]\n [-1.6163063 -1.3951539 4.138681 1.4717648 0.32579005 1.2759184 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAADrOuwoVBL1wLzs9uZyRveIkKj3USYQ+Yg5avRY/ur0dTjs+i0JFPMBK/Txzblo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.00629354 -0.03224663 0.04569954]\n [-0.07109971 0.04153908 0.25837576]\n [-0.05323637 -0.09094064 0.18291517]\n [ 0.01203979 0.03091943 0.21331196]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7ScXm/336CMAWyUSwKMAXSUR0CkZBp/5LyudX2UKGgGR8AZOPtD2JzlaAdLMmgIR0CkZLH+Q2dedX2UKGgGR7/CIAwPAfuDaAdLAmgIR0CkZL6FEiMYdX2UKGgGR7/BlvqC6H0saAdLAmgIR0CkZMh+WnjydX2UKGgGR7/Lz8xbjcVQaAdLA2gIR0CkZNpT/ACXdX2UKGgGR7/BNOdoWYWtaAdLAmgIR0CkZONfoicHdX2UKGgGR8AXpASnLq2SaAdLMmgIR0CkZTxOclPadX2UKGgGR7/YjDsMRYigaAdLBGgIR0CkZU8vM8oydX2UKGgGR7/SX5nDiwSraAdLA2gIR0CkZWDrzGxVdX2UKGgGR7/QMw1zhgmaaAdLA2gIR0CkZXQZOzppdX2UKGgGR7+zmq5sj3VTaAdLAmgIR0CkZX8oYvWZdX2UKGgGR7/Lb212JSBLaAdLA2gIR0CkZZIH1OCYdX2UKGgGR8AftEWqLjxTaAdLMmgIR0CkZK8HWz4UdX2UKGgGR7/G0Ltu1ndwaAdLAmgIR0CkZZ4oy9EkdX2UKGgGR7/EiRnvlU6xaAdLA2gIR0CkZMGjbi6ydX2UKGgGR7+56/qPfbblaAdLAmgIR0CkZarJCBwudX2UKGgGR7+0PtlZowmFaAdLAmgIR0CkZNHKfWc0dX2UKGgGR7/QevZAY51eaAdLA2gIR0CkZb+IuXeFdX2UKGgGR7/LmlImPYFraAdLA2gIR0CkZOFzltCRdX2UKGgGR7/PtxdY4hllaAdLA2gIR0CkZdI1LrX2dX2UKGgGR8AM7Z13dKukaAdLMmgIR0CkZTpF1B+ndX2UKGgGR7+0RWcSXdCWaAdLAmgIR0CkZd3n6l+FdX2UKGgGR7/RsjVx0dR0aAdLA2gIR0CkZfBun/DMdX2UKGgGR7/C5S3solUqaAdLAmgIR0CkZfruhK15dX2UKGgGR7/ivt2LYPGyaAdLB2gIR0CkZWJfpljFdX2UKGgGR7/nMJQcghbGaAdLCWgIR0CkZRf7iyY5dX2UKGgGR7/CfHPu5SWJaAdLAmgIR0CkZW1jqfOEdX2UKGgGR7/QveP7vXsgaAdLA2gIR0CkZg3mV7hOdX2UKGgGR7/KZ3LV4HHFaAdLA2gIR0CkZSs8YAKfdX2UKGgGR7+fMSsbNr0raAdLAWgIR0CkZhPrv9cbdX2UKGgGR7/FaB7NSqEOaAdLAmgIR0CkZXvJA+pwdX2UKGgGR7/AA3kxREWqaAdLAmgIR0CkZh7u+h4/dX2UKGgGR7/MFyq+8Gs4aAdLA2gIR0CkZTtjkMkQdX2UKGgGR7/JdIGyHEdeaAdLA2gIR0CkZYtIsiB5dX2UKGgGR7/AmpEQXhwVaAdLAmgIR0CkZiufVZs9dX2UKGgGR7/Hj/dZaFEiaAdLA2gIR0CkZU1ea8YidX2UKGgGR7/C4dZJTVDsaAdLAmgIR0CkZjXp4bCKdX2UKGgGR7/JF85S3solaAdLA2gIR0CkZZ3EZR8/dX2UKGgGR7+XPzFuNxVAaAdLAWgIR0CkZjt5D7ZWdX2UKGgGR7+0fHPu5SWJaAdLAmgIR0CkZkkLYwqRdX2UKGgGR7/JdVvMr3CbaAdLA2gIR0CkZbCzsyBTdX2UKGgGR7/Xfms/6frbaAdLBGgIR0CkZWY9ovi+dX2UKGgGR7+kAzYVZcLSaAdLAWgIR0CkZWsYEW69dX2UKGgGR7/APEKmbb1zaAdLAmgIR0CkZlO3UhFFdX2UKGgGR7+kNtqHoHLSaAdLAWgIR0CkZlj4QBgedX2UKGgGR8ARQaJhvze5aAdLMmgIR0CkZg0Sh8IBdX2UKGgGR7/QzPrv9cbBaAdLA2gIR0CkZcDA8B+4dX2UKGgGR7+7vG6wt8NQaAdLAmgIR0CkZXY/mknDdX2UKGgGR7+m7+T/yXlbaAdLAWgIR0CkZcXqJMxodX2UKGgGR7/U3+dbxEv1aAdLA2gIR0CkZmo8ZDRddX2UKGgGR7/G88s+V1OkaAdLA2gIR0CkZh3cHnlodX2UKGgGR7/bsZ5zHS4OaAdLBGgIR0CkZYsdcSoPdX2UKGgGR7+6dNFjNIK/aAdLAmgIR0CkZibkfcN6dX2UKGgGR7/T3yZrpJPJaAdLA2gIR0CkZngBDG96dX2UKGgGR7/ia8Hv+fh/aAdLBWgIR0CkZd95Y5ktdX2UKGgGR7/DOpKjBVMmaAdLAmgIR0CkZZTe40/GdX2UKGgGR7+0tqYZ2pyZaAdLAmgIR0CkZoRRVIZqdX2UKGgGR7/Ou5BkZrHmaAdLA2gIR0CkZjet0V8DdX2UKGgGR7/C9s7+1jRVaAdLA2gIR0CkZe+Y2Kl6dX2UKGgGR7/KmBOHnEEUaAdLA2gIR0CkZaTeO4oadX2UKGgGR7+jnJT2nKnvaAdLAWgIR0CkZakbxVhkdX2UKGgGR7/LBgNPP9k0aAdLA2gIR0CkZpHdGiHqdX2UKGgGR7+9LcsUZeiSaAdLAmgIR0CkZfjcM3IddX2UKGgGR7/eHrQgLZzxaAdLBGgIR0CkZkxc3VCpdX2UKGgGR7+9T5wfhddFaAdLAmgIR0CkZp1l5GBndX2UKGgGR7/SylenhsInaAdLA2gIR0CkZgjSofjkdX2UKGgGR7+159mYjSogaAdLAmgIR0CkZqb0Fr2ydX2UKGgGR7/RkH2RJVbSaAdLA2gIR0CkZlpWNm16dX2UKGgGR7+hc/t6X0GvaAdLAWgIR0CkZqu9WZJDdX2UKGgGR7/Bga3qiXY2aAdLAmgIR0CkZhKrJbMYdX2UKGgGR7+gTj/+85CGaAdLAWgIR0CkZhmxt52RdX2UKGgGR7+k5ZKWcBluaAdLAWgIR0CkZh6DwpfAdX2UKGgGR7/GLWqcVgx8aAdLA2gIR0CkZrx59mYjdX2UKGgGR7+0ywfQrtmdaAdLAmgIR0CkZsfPw/gSdX2UKGgGR7/UA1vVEuxsaAdLA2gIR0CkZi+Eh7mddX2UKGgGR7+j3j+717IDaAdLAWgIR0CkZtAavRqodX2UKGgGR7+2/FirksBiaAdLAmgIR0CkZjyFXaJzdX2UKGgGR7/KjrRjSXt0aAdLA2gIR0CkZuCJ40MxdX2UKGgGR7+8zoEB8x9HaAdLAmgIR0CkZkgEEC/5dX2UKGgGR7/UNSqEOAiFaAdLA2gIR0CkZvNz0Yj0dX2UKGgGR7/aFQl8gIQfaAdLBGgIR0CkZmD0lJHzdX2UKGgGR7/XdpZfUnXvaAdLBGgIR0CkZwwFs54odX2UKGgGR7/Xr1/Ue+23aAdLA2gIR0CkZnP8IiTudX2UKGgGR7+gFcIJJGvwaAdLAWgIR0CkZxHh0hePdX2UKGgGR7+3E74i5d4WaAdLAmgIR0CkZn9DIBBBdX2UKGgGR7/WWcz67/XHaAdLA2gIR0CkZyKjSG8FdX2UKGgGR7/bJokAxSHeaAdLBGgIR0CkZph/7SApdX2UKGgGR7/OxXXAdn01aAdLA2gIR0CkZzb0OEuhdX2UKGgGR7/JylvZRKpUaAdLA2gIR0CkZ0ld1MdtdX2UKGgGR7/XPMSsbNr1aAdLBGgIR0CkZrFdC3PSdX2UKGgGR7+7nvDxb0OFaAdLAmgIR0CkZ1RODaoNdX2UKGgGR7/KxcmjTKDDaAdLA2gIR0CkZsGCiAUddX2UKGgGR7+151Ng0CRwaAdLAmgIR0CkZs3LNfPYdX2UKGgGR7/aw5/9YOlPaAdLBGgIR0CkZ2vHcUM5dX2UKGgGR7+RMrVe8f3faAdLAWgIR0CkZtN/FzdUdX2UKGgGR7+73ueBg/keaAdLAmgIR0CkZ3cVHnU2dX2UKGgGR7/Lisny/bj+aAdLA2gIR0CkZuQAuIykdX2UKGgGR7/Wo24uscQzaAdLBGgIR0CkZ46vA44qdX2UKGgGR7/VRLsa86FNaAdLA2gIR0CkZvZ5Z8rqdX2UKGgGR7+jaPCEYfnwaAdLAWgIR0CkZ5Syt3fRdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVqAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e277acd322e4a94bae27383bc6d39298c41ad297e85679c75e5e4ca5ceb41b0
3
+ size 45167
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37b14989306e57222a010bd48ba55f551c96735efae0edf4d415b2666a8d5eef
3
+ size 46447
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.133+-x86_64-with-glibc2.31 # 1 SMP Tue Dec 19 13:14:11 UTC 2023
2
+ - Python: 3.10.13
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.2
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.3
7
+ - Cloudpickle: 3.0.0
8
+ - Gymnasium: 0.29.0
9
+ - OpenAI Gym: 0.26.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78bbff5cbd00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78bbff5d0d80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1708705629240382925, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXD+ePlQx9D7740Y/lQxxv1YyCkBmHGDAbWOmvziFsz+j5Ya/IOPOv2eUsr8TcIRAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA80oGP1HBbT82kx4/H65lP7VNlj+kJJm/RXbCv/dbyD9Pr3S8+SHGv+3LH7/gJss/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABcP54+VDH0PvvjRj/D1oI/yCfRPyTWqT+VDHG/VjIKQGYcYMBzFd4+6ue6vtuCwT5tY6a/OIWzP6Plhr9pcou/BEh9P1uJZ74g486/Z5SyvxNwhEDKYrw/9M2mPktRoz+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.30907714 0.47693884 0.7769162 ]\n [-0.94159824 2.1593223 -3.5017333 ]\n [-1.2999092 1.402503 -1.053883 ]\n [-1.6163063 -1.3951539 4.138681 ]]", "desired_goal": "[[ 0.52458113 0.928731 0.61943376]\n [ 0.8971881 1.1742464 -1.1964307 ]\n [-1.5192343 1.5653065 -0.01493437]\n [-1.5479118 -0.6242054 1.5871239 ]]", "observation": "[[ 0.30907714 0.47693884 0.7769162 1.022179 1.6340265 1.3268476 ]\n [-0.94159824 2.1593223 -3.5017333 0.4337574 -0.3650506 0.37795147]\n [-1.2999092 1.402503 -1.053883 -1.089429 0.9893801 -0.2261099 ]\n [-1.6163063 -1.3951539 4.138681 1.4717648 0.32579005 1.2759184 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAADrOuwoVBL1wLzs9uZyRveIkKj3USYQ+Yg5avRY/ur0dTjs+i0JFPMBK/Txzblo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00629354 -0.03224663 0.04569954]\n [-0.07109971 0.04153908 0.25837576]\n [-0.05323637 -0.09094064 0.18291517]\n [ 0.01203979 0.03091943 0.21331196]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7ScXm/336CMAWyUSwKMAXSUR0CkZBp/5LyudX2UKGgGR8AZOPtD2JzlaAdLMmgIR0CkZLH+Q2dedX2UKGgGR7/CIAwPAfuDaAdLAmgIR0CkZL6FEiMYdX2UKGgGR7/BlvqC6H0saAdLAmgIR0CkZMh+WnjydX2UKGgGR7/Lz8xbjcVQaAdLA2gIR0CkZNpT/ACXdX2UKGgGR7/BNOdoWYWtaAdLAmgIR0CkZONfoicHdX2UKGgGR8AXpASnLq2SaAdLMmgIR0CkZTxOclPadX2UKGgGR7/YjDsMRYigaAdLBGgIR0CkZU8vM8oydX2UKGgGR7/SX5nDiwSraAdLA2gIR0CkZWDrzGxVdX2UKGgGR7/QMw1zhgmaaAdLA2gIR0CkZXQZOzppdX2UKGgGR7+zmq5sj3VTaAdLAmgIR0CkZX8oYvWZdX2UKGgGR7/Lb212JSBLaAdLA2gIR0CkZZIH1OCYdX2UKGgGR8AftEWqLjxTaAdLMmgIR0CkZK8HWz4UdX2UKGgGR7/G0Ltu1ndwaAdLAmgIR0CkZZ4oy9EkdX2UKGgGR7/EiRnvlU6xaAdLA2gIR0CkZMGjbi6ydX2UKGgGR7+56/qPfbblaAdLAmgIR0CkZarJCBwudX2UKGgGR7+0PtlZowmFaAdLAmgIR0CkZNHKfWc0dX2UKGgGR7/QevZAY51eaAdLA2gIR0CkZb+IuXeFdX2UKGgGR7/LmlImPYFraAdLA2gIR0CkZOFzltCRdX2UKGgGR7/PtxdY4hllaAdLA2gIR0CkZdI1LrX2dX2UKGgGR8AM7Z13dKukaAdLMmgIR0CkZTpF1B+ndX2UKGgGR7+0RWcSXdCWaAdLAmgIR0CkZd3n6l+FdX2UKGgGR7/RsjVx0dR0aAdLA2gIR0CkZfBun/DMdX2UKGgGR7/C5S3solUqaAdLAmgIR0CkZfruhK15dX2UKGgGR7/ivt2LYPGyaAdLB2gIR0CkZWJfpljFdX2UKGgGR7/nMJQcghbGaAdLCWgIR0CkZRf7iyY5dX2UKGgGR7/CfHPu5SWJaAdLAmgIR0CkZW1jqfOEdX2UKGgGR7/QveP7vXsgaAdLA2gIR0CkZg3mV7hOdX2UKGgGR7/KZ3LV4HHFaAdLA2gIR0CkZSs8YAKfdX2UKGgGR7+fMSsbNr0raAdLAWgIR0CkZhPrv9cbdX2UKGgGR7/FaB7NSqEOaAdLAmgIR0CkZXvJA+pwdX2UKGgGR7/AA3kxREWqaAdLAmgIR0CkZh7u+h4/dX2UKGgGR7/MFyq+8Gs4aAdLA2gIR0CkZTtjkMkQdX2UKGgGR7/JdIGyHEdeaAdLA2gIR0CkZYtIsiB5dX2UKGgGR7/AmpEQXhwVaAdLAmgIR0CkZiufVZs9dX2UKGgGR7/Hj/dZaFEiaAdLA2gIR0CkZU1ea8YidX2UKGgGR7/C4dZJTVDsaAdLAmgIR0CkZjXp4bCKdX2UKGgGR7/JF85S3solaAdLA2gIR0CkZZ3EZR8/dX2UKGgGR7+XPzFuNxVAaAdLAWgIR0CkZjt5D7ZWdX2UKGgGR7+0fHPu5SWJaAdLAmgIR0CkZkkLYwqRdX2UKGgGR7/JdVvMr3CbaAdLA2gIR0CkZbCzsyBTdX2UKGgGR7/Xfms/6frbaAdLBGgIR0CkZWY9ovi+dX2UKGgGR7+kAzYVZcLSaAdLAWgIR0CkZWsYEW69dX2UKGgGR7/APEKmbb1zaAdLAmgIR0CkZlO3UhFFdX2UKGgGR7+kNtqHoHLSaAdLAWgIR0CkZlj4QBgedX2UKGgGR8ARQaJhvze5aAdLMmgIR0CkZg0Sh8IBdX2UKGgGR7/QzPrv9cbBaAdLA2gIR0CkZcDA8B+4dX2UKGgGR7+7vG6wt8NQaAdLAmgIR0CkZXY/mknDdX2UKGgGR7+m7+T/yXlbaAdLAWgIR0CkZcXqJMxodX2UKGgGR7/U3+dbxEv1aAdLA2gIR0CkZmo8ZDRddX2UKGgGR7/G88s+V1OkaAdLA2gIR0CkZh3cHnlodX2UKGgGR7/bsZ5zHS4OaAdLBGgIR0CkZYsdcSoPdX2UKGgGR7+6dNFjNIK/aAdLAmgIR0CkZibkfcN6dX2UKGgGR7/T3yZrpJPJaAdLA2gIR0CkZngBDG96dX2UKGgGR7/ia8Hv+fh/aAdLBWgIR0CkZd95Y5ktdX2UKGgGR7/DOpKjBVMmaAdLAmgIR0CkZZTe40/GdX2UKGgGR7+0tqYZ2pyZaAdLAmgIR0CkZoRRVIZqdX2UKGgGR7/Ou5BkZrHmaAdLA2gIR0CkZjet0V8DdX2UKGgGR7/C9s7+1jRVaAdLA2gIR0CkZe+Y2Kl6dX2UKGgGR7/KmBOHnEEUaAdLA2gIR0CkZaTeO4oadX2UKGgGR7+jnJT2nKnvaAdLAWgIR0CkZakbxVhkdX2UKGgGR7/LBgNPP9k0aAdLA2gIR0CkZpHdGiHqdX2UKGgGR7+9LcsUZeiSaAdLAmgIR0CkZfjcM3IddX2UKGgGR7/eHrQgLZzxaAdLBGgIR0CkZkxc3VCpdX2UKGgGR7+9T5wfhddFaAdLAmgIR0CkZp1l5GBndX2UKGgGR7/SylenhsInaAdLA2gIR0CkZgjSofjkdX2UKGgGR7+159mYjSogaAdLAmgIR0CkZqb0Fr2ydX2UKGgGR7/RkH2RJVbSaAdLA2gIR0CkZlpWNm16dX2UKGgGR7+hc/t6X0GvaAdLAWgIR0CkZqu9WZJDdX2UKGgGR7/Bga3qiXY2aAdLAmgIR0CkZhKrJbMYdX2UKGgGR7+gTj/+85CGaAdLAWgIR0CkZhmxt52RdX2UKGgGR7+k5ZKWcBluaAdLAWgIR0CkZh6DwpfAdX2UKGgGR7/GLWqcVgx8aAdLA2gIR0CkZrx59mYjdX2UKGgGR7+0ywfQrtmdaAdLAmgIR0CkZsfPw/gSdX2UKGgGR7/UA1vVEuxsaAdLA2gIR0CkZi+Eh7mddX2UKGgGR7+j3j+717IDaAdLAWgIR0CkZtAavRqodX2UKGgGR7+2/FirksBiaAdLAmgIR0CkZjyFXaJzdX2UKGgGR7/KjrRjSXt0aAdLA2gIR0CkZuCJ40MxdX2UKGgGR7+8zoEB8x9HaAdLAmgIR0CkZkgEEC/5dX2UKGgGR7/UNSqEOAiFaAdLA2gIR0CkZvNz0Yj0dX2UKGgGR7/aFQl8gIQfaAdLBGgIR0CkZmD0lJHzdX2UKGgGR7/XdpZfUnXvaAdLBGgIR0CkZwwFs54odX2UKGgGR7/Xr1/Ue+23aAdLA2gIR0CkZnP8IiTudX2UKGgGR7+gFcIJJGvwaAdLAWgIR0CkZxHh0hePdX2UKGgGR7+3E74i5d4WaAdLAmgIR0CkZn9DIBBBdX2UKGgGR7/WWcz67/XHaAdLA2gIR0CkZyKjSG8FdX2UKGgGR7/bJokAxSHeaAdLBGgIR0CkZph/7SApdX2UKGgGR7/OxXXAdn01aAdLA2gIR0CkZzb0OEuhdX2UKGgGR7/JylvZRKpUaAdLA2gIR0CkZ0ld1MdtdX2UKGgGR7/XPMSsbNr1aAdLBGgIR0CkZrFdC3PSdX2UKGgGR7+7nvDxb0OFaAdLAmgIR0CkZ1RODaoNdX2UKGgGR7/KxcmjTKDDaAdLA2gIR0CkZsGCiAUddX2UKGgGR7+151Ng0CRwaAdLAmgIR0CkZs3LNfPYdX2UKGgGR7/aw5/9YOlPaAdLBGgIR0CkZ2vHcUM5dX2UKGgGR7+RMrVe8f3faAdLAWgIR0CkZtN/FzdUdX2UKGgGR7+73ueBg/keaAdLAmgIR0CkZ3cVHnU2dX2UKGgGR7/Lisny/bj+aAdLA2gIR0CkZuQAuIykdX2UKGgGR7/Wo24uscQzaAdLBGgIR0CkZ46vA44qdX2UKGgGR7/VRLsa86FNaAdLA2gIR0CkZvZ5Z8rqdX2UKGgGR7+jaPCEYfnwaAdLAWgIR0CkZ5Syt3fRdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVqAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.133+-x86_64-with-glibc2.31 # 1 SMP Tue Dec 19 13:14:11 UTC 2023", "Python": "3.10.13", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.2", "GPU Enabled": "True", "Numpy": "1.26.3", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.0", "OpenAI Gym": "0.26.2"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.6141757707111537, "std_reward": 1.3214916368674987, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-23T17:21:12.067429"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fff9a0c1a87337534b5551690b32b049e9b300e0ed39e9c601283dfde4157b76
3
+ size 2636