--- base_model: facebook/mbart-large-cc25 language: - nl - es --- # ES and NL to AMR parsing (stratified) This version was trained on a subselection of the data. The AMR 3.0 corpus was translated to all the relevant languages. We then divided the dataset so that in total we only see half of each language's dataset (so that in total we only see the full AMR 3.0 corpus in size once). In other words, all languages were undersampled for research purposes. This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6212 - Smatch Precision: 72.94 - Smatch Recall: 75.83 - Smatch Fscore: 74.36 - Smatch Unparsable: 0 - Percent Not Recoverable: 0.4065 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Smatch Precision | Smatch Recall | Smatch Fscore | Smatch Unparsable | Percent Not Recoverable | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:-------------:|:-----------------:|:-----------------------:| | 0.4098 | 1.0 | 3477 | 1.3168 | 17.61 | 63.89 | 27.62 | 0 | 0.0 | | 0.3307 | 2.0 | 6954 | 1.0109 | 21.08 | 68.69 | 32.26 | 0 | 0.0581 | | 0.1253 | 3.0 | 10431 | 0.9193 | 32.88 | 71.46 | 45.04 | 0 | 0.0 | | 0.1665 | 4.0 | 13908 | 0.7549 | 35.07 | 72.54 | 47.29 | 0 | 0.0 | | 0.0435 | 5.0 | 17385 | 0.8298 | 40.25 | 74.91 | 52.37 | 0 | 0.0581 | | 0.2156 | 6.0 | 20862 | 0.6525 | 45.7 | 75.11 | 56.82 | 0 | 0.0 | | 0.133 | 7.0 | 24339 | 0.6548 | 47.7 | 75.36 | 58.42 | 0 | 0.0 | | 0.0624 | 8.0 | 27817 | 0.6054 | 53.59 | 75.18 | 62.57 | 0 | 0.0 | | 0.0841 | 9.0 | 31294 | 0.6496 | 54.68 | 75.01 | 63.25 | 0 | 0.0581 | | 0.1073 | 10.0 | 34771 | 0.5960 | 55.76 | 76.35 | 64.45 | 0 | 0.0 | | 0.048 | 11.0 | 38248 | 0.5924 | 60.99 | 76.4 | 67.83 | 0 | 0.0 | | 0.0341 | 12.0 | 41725 | 0.5880 | 60.39 | 76.31 | 67.42 | 0 | 0.0581 | | 0.0079 | 13.0 | 45202 | 0.6117 | 61.61 | 76.52 | 68.26 | 0 | 0.0 | | 0.0244 | 14.0 | 48679 | 0.6191 | 63.78 | 76.44 | 69.54 | 0 | 0.0581 | | 0.0575 | 15.0 | 52156 | 0.6320 | 66.27 | 76.71 | 71.11 | 0 | 0.1161 | | 0.0204 | 16.0 | 55634 | 0.6126 | 67.51 | 76.48 | 71.72 | 0 | 0.0 | | 0.0278 | 17.0 | 59111 | 0.6114 | 67.6 | 76.8 | 71.91 | 0 | 0.0581 | | 0.0219 | 18.0 | 62588 | 0.6184 | 68.84 | 77.14 | 72.75 | 0 | 0.0581 | | 0.01 | 19.0 | 66065 | 0.6197 | 69.62 | 76.77 | 73.02 | 0 | 0.0 | | 0.0423 | 20.0 | 69542 | 0.6204 | 71.01 | 76.89 | 73.83 | 0 | 0.0581 | | 0.0095 | 21.0 | 73019 | 0.6309 | 70.76 | 76.53 | 73.53 | 0 | 0.0581 | | 0.0132 | 22.0 | 76496 | 0.6208 | 71.97 | 76.41 | 74.12 | 0 | 0.2904 | | 0.0148 | 23.0 | 79973 | 0.6307 | 71.86 | 76.61 | 74.16 | 0 | 0.0581 | | 0.0034 | 24.0 | 83451 | 0.6258 | 72.41 | 76.24 | 74.28 | 0 | 0.3484 | | 0.0527 | 25.0 | 86925 | 0.6212 | 72.94 | 75.83 | 74.36 | 0 | 0.4065 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.2 - Tokenizers 0.13.3