BrayamArdila
commited on
Commit
•
c4213c0
1
Parent(s):
47968b2
Update README.md
Browse files
README.md
CHANGED
@@ -2,15 +2,19 @@
|
|
2 |
license: gpl
|
3 |
---
|
4 |
|
5 |
-
|
|
|
6 |
|
7 |
Una breve descripción del modelo y su propósito principal.
|
8 |
|
9 |
-
#
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
Este modelo utiliza la arquitectura T5 de Transformers para tareas de procesamiento de lenguaje natural, posiblemente centradas en la generación de texto o traducción. Está implementado y entrenado usando PyTorch Lightning, lo que facilita la escalabilidad y eficiencia en el entrenamiento.
|
12 |
|
13 |
-
#
|
14 |
|
15 |
Tipo de Modelo: T5 para generación condicional de texto.
|
16 |
|
@@ -18,219 +22,14 @@ Entrenado con: PyTorch Lightning.
|
|
18 |
|
19 |
Bibliotecas Clave: Transformers, SentencePiece, PyTorch Lightning.
|
20 |
|
21 |
-
#Datos
|
22 |
|
23 |
Preparación de Datos: Uso de T5Dataset para la manipulación y preparación de datos, adaptado para trabajar con el modelo T5.
|
24 |
-
División de Datos: Dividido en conjuntos de entrenamiento y prueba para una evaluación efectiva.
|
25 |
-
Arquitectura del Modelo
|
26 |
-
Base: T5ForConditionalGeneration de la biblioteca Transformers.
|
27 |
-
Personalización: Implementación dentro de una clase T5Model que extiende pl.LightningModule, lo que indica una integración con PyTorch Lightning para gestionar el entrenamiento y la validación.
|
28 |
-
Uso del Modelo
|
29 |
-
Instrucciones específicas no disponibles en el notebook proporcionado. Se recomienda proporcionar ejemplos de cómo cargar y utilizar el modelo para hacer predicciones.
|
30 |
-
Requisitos y Dependencias
|
31 |
-
Bibliotecas Requeridas: transformers, sentencepiece, pytorch_lightning.
|
32 |
-
Notas Adicionales
|
33 |
-
Información sobre métricas de evaluación y resultados del modelo no disponible en el notebook proporcionado. Se sugiere realizar pruebas adicionales para determinar el rendimiento del modelo.
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
# Model Card for Model ID
|
42 |
-
|
43 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
44 |
-
|
45 |
-
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
|
46 |
-
|
47 |
-
## Model Details
|
48 |
-
|
49 |
-
### Model Description
|
50 |
-
|
51 |
-
<!-- Provide a longer summary of what this model is. -->
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
- **Developed by:** [More Information Needed]
|
56 |
-
- **Funded by [optional]:** [More Information Needed]
|
57 |
-
- **Shared by [optional]:** [More Information Needed]
|
58 |
-
- **Model type:** [More Information Needed]
|
59 |
-
- **Language(s) (NLP):** [More Information Needed]
|
60 |
-
- **License:** [More Information Needed]
|
61 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
62 |
-
|
63 |
-
### Model Sources [optional]
|
64 |
-
|
65 |
-
<!-- Provide the basic links for the model. -->
|
66 |
-
|
67 |
-
- **Repository:** [More Information Needed]
|
68 |
-
- **Paper [optional]:** [More Information Needed]
|
69 |
-
- **Demo [optional]:** [More Information Needed]
|
70 |
-
|
71 |
-
## Uses
|
72 |
-
|
73 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
74 |
-
|
75 |
-
### Direct Use
|
76 |
-
|
77 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
78 |
-
|
79 |
-
[More Information Needed]
|
80 |
-
|
81 |
-
### Downstream Use [optional]
|
82 |
-
|
83 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
84 |
-
|
85 |
-
[More Information Needed]
|
86 |
-
|
87 |
-
### Out-of-Scope Use
|
88 |
-
|
89 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
90 |
-
|
91 |
-
[More Information Needed]
|
92 |
-
|
93 |
-
## Bias, Risks, and Limitations
|
94 |
-
|
95 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
96 |
-
|
97 |
-
[More Information Needed]
|
98 |
-
|
99 |
-
### Recommendations
|
100 |
-
|
101 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
102 |
-
|
103 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
104 |
-
|
105 |
-
## How to Get Started with the Model
|
106 |
-
|
107 |
-
Use the code below to get started with the model.
|
108 |
-
|
109 |
-
[More Information Needed]
|
110 |
-
|
111 |
-
## Training Details
|
112 |
-
|
113 |
-
### Training Data
|
114 |
-
|
115 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
116 |
-
|
117 |
-
[More Information Needed]
|
118 |
-
|
119 |
-
### Training Procedure
|
120 |
-
|
121 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
122 |
-
|
123 |
-
#### Preprocessing [optional]
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
|
128 |
-
#### Training Hyperparameters
|
129 |
-
|
130 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
135 |
-
|
136 |
-
[More Information Needed]
|
137 |
-
|
138 |
-
## Evaluation
|
139 |
-
|
140 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
141 |
-
|
142 |
-
### Testing Data, Factors & Metrics
|
143 |
-
|
144 |
-
#### Testing Data
|
145 |
-
|
146 |
-
<!-- This should link to a Dataset Card if possible. -->
|
147 |
-
|
148 |
-
[More Information Needed]
|
149 |
-
|
150 |
-
#### Factors
|
151 |
-
|
152 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
153 |
-
|
154 |
-
[More Information Needed]
|
155 |
-
|
156 |
-
#### Metrics
|
157 |
-
|
158 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
159 |
-
|
160 |
-
[More Information Needed]
|
161 |
-
|
162 |
-
### Results
|
163 |
-
|
164 |
-
[More Information Needed]
|
165 |
-
|
166 |
-
#### Summary
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
## Model Examination [optional]
|
171 |
-
|
172 |
-
<!-- Relevant interpretability work for the model goes here -->
|
173 |
-
|
174 |
-
[More Information Needed]
|
175 |
-
|
176 |
-
## Environmental Impact
|
177 |
-
|
178 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
179 |
-
|
180 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
181 |
-
|
182 |
-
- **Hardware Type:** [More Information Needed]
|
183 |
-
- **Hours used:** [More Information Needed]
|
184 |
-
- **Cloud Provider:** [More Information Needed]
|
185 |
-
- **Compute Region:** [More Information Needed]
|
186 |
-
- **Carbon Emitted:** [More Information Needed]
|
187 |
-
|
188 |
-
## Technical Specifications [optional]
|
189 |
-
|
190 |
-
### Model Architecture and Objective
|
191 |
-
|
192 |
-
[More Information Needed]
|
193 |
-
|
194 |
-
### Compute Infrastructure
|
195 |
-
|
196 |
-
[More Information Needed]
|
197 |
-
|
198 |
-
#### Hardware
|
199 |
-
|
200 |
-
[More Information Needed]
|
201 |
-
|
202 |
-
#### Software
|
203 |
-
|
204 |
-
[More Information Needed]
|
205 |
-
|
206 |
-
## Citation [optional]
|
207 |
-
|
208 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
209 |
-
|
210 |
-
**BibTeX:**
|
211 |
-
|
212 |
-
[More Information Needed]
|
213 |
-
|
214 |
-
**APA:**
|
215 |
-
|
216 |
-
[More Information Needed]
|
217 |
-
|
218 |
-
## Glossary [optional]
|
219 |
-
|
220 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
221 |
-
|
222 |
-
[More Information Needed]
|
223 |
-
|
224 |
-
## More Information [optional]
|
225 |
-
|
226 |
-
[More Information Needed]
|
227 |
-
|
228 |
-
## Model Card Authors [optional]
|
229 |
-
|
230 |
-
[More Information Needed]
|
231 |
-
|
232 |
-
## Model Card Contact
|
233 |
-
|
234 |
-
[More Information Needed]
|
235 |
|
|
|
236 |
|
|
|
|
|
|
|
|
2 |
license: gpl
|
3 |
---
|
4 |
|
5 |
+
|
6 |
+
# Nombre del modelo: BAAO
|
7 |
|
8 |
Una breve descripción del modelo y su propósito principal.
|
9 |
|
10 |
+
# Descripciòn
|
11 |
+
|
12 |
+
Este modelo utiliza la arquitectura T5 de Transformers para tareas de procesamiento de lenguaje natural,
|
13 |
+
centradas en la generación de texto. Se implemento y entreno usando PyTorch Lightning,
|
14 |
+
lo que facilita la escalabilidad y eficiencia en el entrenamiento.
|
15 |
|
|
|
16 |
|
17 |
+
# Caracterìsticas del modelo
|
18 |
|
19 |
Tipo de Modelo: T5 para generación condicional de texto.
|
20 |
|
|
|
22 |
|
23 |
Bibliotecas Clave: Transformers, SentencePiece, PyTorch Lightning.
|
24 |
|
25 |
+
# Datos utilizados
|
26 |
|
27 |
Preparación de Datos: Uso de T5Dataset para la manipulación y preparación de datos, adaptado para trabajar con el modelo T5.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
División de Datos: Dividido en conjuntos de entrenamiento y prueba para una evaluación efectiva.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
# Arquitectura del modelo
|
32 |
|
33 |
+
Base: T5ForConditionalGeneration de la biblioteca Transformers.
|
34 |
+
Personalización: Implementación dentro de una clase T5Model que extiende pl.LightningModule,
|
35 |
+
lo que indica una integración con PyTorch Lightning para gestionar el entrenamiento y la validación.
|