BrayamArdila commited on
Commit
c4213c0
1 Parent(s): 47968b2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -215
README.md CHANGED
@@ -2,15 +2,19 @@
2
  license: gpl
3
  ---
4
 
5
- #Nombre del Modelo: [Nombre del Modelo]
 
6
 
7
  Una breve descripción del modelo y su propósito principal.
8
 
9
- #Descripción
 
 
 
 
10
 
11
- Este modelo utiliza la arquitectura T5 de Transformers para tareas de procesamiento de lenguaje natural, posiblemente centradas en la generación de texto o traducción. Está implementado y entrenado usando PyTorch Lightning, lo que facilita la escalabilidad y eficiencia en el entrenamiento.
12
 
13
- #Características del Modelo
14
 
15
  Tipo de Modelo: T5 para generación condicional de texto.
16
 
@@ -18,219 +22,14 @@ Entrenado con: PyTorch Lightning.
18
 
19
  Bibliotecas Clave: Transformers, SentencePiece, PyTorch Lightning.
20
 
21
- #Datos Utilizados
22
 
23
  Preparación de Datos: Uso de T5Dataset para la manipulación y preparación de datos, adaptado para trabajar con el modelo T5.
24
- División de Datos: Dividido en conjuntos de entrenamiento y prueba para una evaluación efectiva.
25
- Arquitectura del Modelo
26
- Base: T5ForConditionalGeneration de la biblioteca Transformers.
27
- Personalización: Implementación dentro de una clase T5Model que extiende pl.LightningModule, lo que indica una integración con PyTorch Lightning para gestionar el entrenamiento y la validación.
28
- Uso del Modelo
29
- Instrucciones específicas no disponibles en el notebook proporcionado. Se recomienda proporcionar ejemplos de cómo cargar y utilizar el modelo para hacer predicciones.
30
- Requisitos y Dependencias
31
- Bibliotecas Requeridas: transformers, sentencepiece, pytorch_lightning.
32
- Notas Adicionales
33
- Información sobre métricas de evaluación y resultados del modelo no disponible en el notebook proporcionado. Se sugiere realizar pruebas adicionales para determinar el rendimiento del modelo.
34
-
35
-
36
-
37
-
38
-
39
-
40
-
41
- # Model Card for Model ID
42
-
43
- <!-- Provide a quick summary of what the model is/does. -->
44
-
45
- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
46
-
47
- ## Model Details
48
-
49
- ### Model Description
50
-
51
- <!-- Provide a longer summary of what this model is. -->
52
-
53
-
54
-
55
- - **Developed by:** [More Information Needed]
56
- - **Funded by [optional]:** [More Information Needed]
57
- - **Shared by [optional]:** [More Information Needed]
58
- - **Model type:** [More Information Needed]
59
- - **Language(s) (NLP):** [More Information Needed]
60
- - **License:** [More Information Needed]
61
- - **Finetuned from model [optional]:** [More Information Needed]
62
-
63
- ### Model Sources [optional]
64
-
65
- <!-- Provide the basic links for the model. -->
66
-
67
- - **Repository:** [More Information Needed]
68
- - **Paper [optional]:** [More Information Needed]
69
- - **Demo [optional]:** [More Information Needed]
70
-
71
- ## Uses
72
-
73
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
74
-
75
- ### Direct Use
76
-
77
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
78
-
79
- [More Information Needed]
80
-
81
- ### Downstream Use [optional]
82
-
83
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
84
-
85
- [More Information Needed]
86
-
87
- ### Out-of-Scope Use
88
-
89
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
90
-
91
- [More Information Needed]
92
-
93
- ## Bias, Risks, and Limitations
94
-
95
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
96
-
97
- [More Information Needed]
98
-
99
- ### Recommendations
100
-
101
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
102
-
103
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
104
-
105
- ## How to Get Started with the Model
106
-
107
- Use the code below to get started with the model.
108
-
109
- [More Information Needed]
110
-
111
- ## Training Details
112
-
113
- ### Training Data
114
-
115
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
116
-
117
- [More Information Needed]
118
-
119
- ### Training Procedure
120
-
121
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
122
-
123
- #### Preprocessing [optional]
124
-
125
- [More Information Needed]
126
-
127
-
128
- #### Training Hyperparameters
129
-
130
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
131
 
132
- #### Speeds, Sizes, Times [optional]
133
-
134
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
135
-
136
- [More Information Needed]
137
-
138
- ## Evaluation
139
-
140
- <!-- This section describes the evaluation protocols and provides the results. -->
141
-
142
- ### Testing Data, Factors & Metrics
143
-
144
- #### Testing Data
145
-
146
- <!-- This should link to a Dataset Card if possible. -->
147
-
148
- [More Information Needed]
149
-
150
- #### Factors
151
-
152
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
153
-
154
- [More Information Needed]
155
-
156
- #### Metrics
157
-
158
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
159
-
160
- [More Information Needed]
161
-
162
- ### Results
163
-
164
- [More Information Needed]
165
-
166
- #### Summary
167
-
168
-
169
-
170
- ## Model Examination [optional]
171
-
172
- <!-- Relevant interpretability work for the model goes here -->
173
-
174
- [More Information Needed]
175
-
176
- ## Environmental Impact
177
-
178
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
179
-
180
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
181
-
182
- - **Hardware Type:** [More Information Needed]
183
- - **Hours used:** [More Information Needed]
184
- - **Cloud Provider:** [More Information Needed]
185
- - **Compute Region:** [More Information Needed]
186
- - **Carbon Emitted:** [More Information Needed]
187
-
188
- ## Technical Specifications [optional]
189
-
190
- ### Model Architecture and Objective
191
-
192
- [More Information Needed]
193
-
194
- ### Compute Infrastructure
195
-
196
- [More Information Needed]
197
-
198
- #### Hardware
199
-
200
- [More Information Needed]
201
-
202
- #### Software
203
-
204
- [More Information Needed]
205
-
206
- ## Citation [optional]
207
-
208
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
209
-
210
- **BibTeX:**
211
-
212
- [More Information Needed]
213
-
214
- **APA:**
215
-
216
- [More Information Needed]
217
-
218
- ## Glossary [optional]
219
-
220
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
221
-
222
- [More Information Needed]
223
-
224
- ## More Information [optional]
225
-
226
- [More Information Needed]
227
-
228
- ## Model Card Authors [optional]
229
-
230
- [More Information Needed]
231
-
232
- ## Model Card Contact
233
-
234
- [More Information Needed]
235
 
 
236
 
 
 
 
 
2
  license: gpl
3
  ---
4
 
5
+
6
+ # Nombre del modelo: BAAO
7
 
8
  Una breve descripción del modelo y su propósito principal.
9
 
10
+ # Descripciòn
11
+
12
+ Este modelo utiliza la arquitectura T5 de Transformers para tareas de procesamiento de lenguaje natural,
13
+ centradas en la generación de texto. Se implemento y entreno usando PyTorch Lightning,
14
+ lo que facilita la escalabilidad y eficiencia en el entrenamiento.
15
 
 
16
 
17
+ # Caracterìsticas del modelo
18
 
19
  Tipo de Modelo: T5 para generación condicional de texto.
20
 
 
22
 
23
  Bibliotecas Clave: Transformers, SentencePiece, PyTorch Lightning.
24
 
25
+ # Datos utilizados
26
 
27
  Preparación de Datos: Uso de T5Dataset para la manipulación y preparación de datos, adaptado para trabajar con el modelo T5.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
+ División de Datos: Dividido en conjuntos de entrenamiento y prueba para una evaluación efectiva.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
+ # Arquitectura del modelo
32
 
33
+ Base: T5ForConditionalGeneration de la biblioteca Transformers.
34
+ Personalización: Implementación dentro de una clase T5Model que extiende pl.LightningModule,
35
+ lo que indica una integración con PyTorch Lightning para gestionar el entrenamiento y la validación.