Transformers
PyTorch
English
bridgetower
Inference Endpoints
shaoyent commited on
Commit
bd8c7d1
1 Parent(s): b789e49

Initial update

Browse files
Files changed (6) hide show
  1. README.md +118 -1
  2. config.json +55 -0
  3. preprocessor_config.json +6 -0
  4. pytorch_model.bin +3 -0
  5. tokenizer.json +0 -0
  6. vocab.json +0 -0
README.md CHANGED
@@ -1,4 +1,121 @@
1
  ---
 
 
 
2
  license: mit
 
 
 
 
 
3
  ---
4
- WIP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: en
3
+ tags:
4
+ - bridgetower
5
  license: mit
6
+ datasets:
7
+ - conceptual_captions
8
+ - sbu_captions
9
+ - visual_genome
10
+ - mscoco_captions
11
  ---
12
+
13
+ # BridgeTower large-itm-mlm model
14
+
15
+ The BridgeTower model was proposed in "BridgeTower: Building Bridges Between Encoders in Vision-Language Representative Learning" by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
16
+ The model was pretrained on English language using masked language modeling (MLM) and image text matching (ITM)objectives. It was introduced in
17
+ [this paper](https://arxiv.org/pdf/2206.08657.pdf) and first released in
18
+ [this repository](https://github.com/microsoft/BridgeTower).
19
+
20
+ BridgeTower got accepted to [AAAI'23](https://aaai.org/Conferences/AAAI-23/).
21
+
22
+ ## Model description
23
+
24
+ The abstract from the paper is the following:
25
+ Vision-Language (VL) models with the Two-Tower architecture have dominated visual-language representation learning in recent years. Current VL models either use lightweight uni-modal encoders and learn to extract, align and fuse both modalities simultaneously in a deep cross-modal encoder, or feed the last-layer uni-modal representations from the deep pre-trained uni-modal encoders into the top cross-modal encoder. Both approaches potentially restrict vision-language representation learning and limit model performance. In this paper, we propose BridgeTower, which introduces multiple bridge layers that build a connection between the top layers of uni-modal encoders and each layer of the cross-modal encoder. This enables effective bottom-up cross-modal alignment and fusion between visual and textual representations of different semantic levels of pre-trained uni-modal encoders in the cross-modal encoder. Pre-trained with only 4M images, BridgeTower achieves state-of-the-art performance on various downstream vision-language tasks. In particular, on the VQAv2 test-std set, BridgeTower achieves an accuracy of 78.73%, outperforming the previous state-of-the-art model METER by 1.09% with the same pre-training data and almost negligible additional parameters and computational costs. Notably, when further scaling the model, BridgeTower achieves an accuracy of 81.15%, surpassing models that are pre-trained on orders-of-magnitude larger datasets.
26
+
27
+ ## Intended uses & limitations(TODO)
28
+
29
+
30
+ ### How to use
31
+
32
+ Here is how to use this model to perform image and text matching:
33
+
34
+ ```python
35
+ from transformers import BridgeTowerProcessor, BridgeTowerForImageAndTextRetrieval
36
+ import requests
37
+ from PIL import Image
38
+
39
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
40
+ image = Image.open(requests.get(url, stream=True).raw)
41
+ texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"]
42
+
43
+ processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-large-itm-mlm")
44
+ model = BridgeTowerForImageAndTextRetrieval.from_pretrained("BridgeTower/bridgetower-large-itm-mlm")
45
+
46
+ # forward pass
47
+ scores = dict()
48
+ for text in texts:
49
+ # prepare inputs
50
+ encoding = processor(image, text, return_tensors="pt")
51
+ outputs = model(**encoding)
52
+ scores[text] = outputs.logits[0,1].item()
53
+ ```
54
+
55
+ Here is how to use this model to perfom masked language modeling:
56
+
57
+ ```python
58
+ from transformers import BridgeTowerProcessor, BridgeTowerForMaskedLM
59
+ from PIL import Image
60
+ import requests
61
+
62
+ url = "http://images.cocodataset.org/val2017/000000360943.jpg"
63
+ image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
64
+ text = "a <mask> looking out of the window"
65
+
66
+ processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-large-itm-mlm")
67
+ model = BridgeTowerForMaskedLM.from_pretrained("BridgeTower/bridgetower-large-itm-mlm")
68
+
69
+ # prepare inputs
70
+ encoding = processor(image, text, return_tensors="pt")
71
+
72
+ # forward pass
73
+ outputs = model(**encoding)
74
+
75
+ results = processor.decode(outputs.logits.argmax(dim=-1).squeeze(0).tolist())
76
+
77
+ print(results)
78
+ .a cat looking out of the window.
79
+ ```
80
+
81
+ ### Limitations and bias
82
+
83
+ TODO
84
+
85
+ ## Training data
86
+
87
+ The BridgeTower model was pretrained on four public image-caption datasets:
88
+ - [Conceptual Captions(CC)](https://ai.google.com/research/ConceptualCaptions/),
89
+ - [SBU Captions](https://www.cs.rice.edu/~vo9/sbucaptions/),
90
+ - [MSCOCO Captions](https://arxiv.org/pdf/1504.00325.pdf),
91
+ - [Visual Genome](https://visualgenome.org/)
92
+
93
+ The total number of unique images in the combined data is 4M.
94
+
95
+ ## Training procedure
96
+
97
+ ### Preprocessing
98
+
99
+ TODO
100
+
101
+ ### Pretraining
102
+
103
+ The model was pre-trained for 100k steps on 8 NVIDIA A100 GPUs with a batch size of 4096.
104
+ The optimizer used was AdamW with a learning rate of 1e-5. No data augmentation was used except for center-crop. The image resolution in pre-training is set to 288 x 288.
105
+
106
+ ## Evaluation results
107
+ Please refer to [Table 5](https://arxiv.org/pdf/2206.08657.pdf) for BridgeTower's performance on Image Retrieval and other down stream tasks.
108
+
109
+ ### BibTeX entry and citation info
110
+ ```bibtex
111
+ @article{xu2022bridge,
112
+ title={Bridge-Tower: Building Bridges Between Encoders in Vision-Language Representation Learning},
113
+ author={Xu, Xiao and
114
+ Wu, Chenfei and
115
+ Rosenman, Shachar and
116
+ Lal, Vasudev and
117
+ Duan, Nan},
118
+ journal={arXiv preprint arXiv:2206.08657},
119
+ year={2022}
120
+ }
121
+ ```
config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "share_cross_modal_transformer_layers": true,
3
+ "drop_rate": 0.1,
4
+ "head_hidden_scale": 2,
5
+ "hidden_act": "gelu",
6
+ "hidden_size": 1024,
7
+ "initializer_factor": 1,
8
+ "is_encoder_decoder": false,
9
+ "layer_norm_eps": 1e-05,
10
+ "share_link_tower_layers": false,
11
+ "link_tower_type": "add",
12
+ "num_attention_heads": 16,
13
+ "num_hidden_layers": 6,
14
+ "tie_word_embeddings": false,
15
+ "text_config_dict": null,
16
+ "init_layernorm_from_vision_encoder": false,
17
+ "text_config": {
18
+ "architectures": [
19
+ "BridgeTowerTextModel"
20
+ ],
21
+ "vocab_size": 50265,
22
+ "hidden_size": 1024,
23
+ "num_hidden_layers": 24,
24
+ "num_attention_heads": 16,
25
+ "intermediate_size": 4096,
26
+ "hidden_act": "gelu",
27
+ "hidden_dropout_prob": 0.1,
28
+ "attention_probs_dropout_prob": 0.1,
29
+ "max_position_embeddings": 514,
30
+ "type_vocab_size": 1,
31
+ "initializer_factor": 1,
32
+ "initializer_range": 0.02,
33
+ "layer_norm_eps": 1e-05,
34
+ "pad_token_id": 1,
35
+ "bos_token_id": 0,
36
+ "eos_token_id": 2,
37
+ "position_embedding_type": "absolute",
38
+ "use_cache": true,
39
+ "classifier_dropout": null
40
+ },
41
+ "vision_config_dict": null,
42
+ "vision_config": {
43
+ "architectures": [
44
+ "BridgeTowerVisionModel"
45
+ ],
46
+ "hidden_size": 1024,
47
+ "num_hidden_layers": 24,
48
+ "patch_size": 14,
49
+ "image_size": 294,
50
+ "initializer_factor": 1,
51
+ "stop_gradient": false,
52
+ "share_layernorm": true,
53
+ "remove_last_layer": false
54
+ }
55
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "max_text_len":50,
3
+ "size":294,
4
+ "tokenizer":"roberta-large",
5
+ "vocab_size":50265
6
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93b54c0972e9f09851fb7d62f278ea6c086855c73f4cd399cd8ed3104c39a23c
3
+ size 3668725385
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
vocab.json ADDED
The diff for this file is too large to render. See raw diff