Broyojo commited on
Commit
aad8d37
·
verified ·
1 Parent(s): 5972fbd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md CHANGED
@@ -12,6 +12,92 @@ language:
12
  - en
13
  ---
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  # Uploaded model
16
 
17
  - **Developed by:** Broyojo
 
12
  - en
13
  ---
14
 
15
+ # Overview
16
+ This model was trained using Phase 2 data of PRM800K.
17
+ It first outputs thoughts in a "thinking" message, with each thought delimited by a `<|end_of_thought|>` token.
18
+ Then, it makes an assistant message containing the final answer.
19
+
20
+ Example:
21
+ ```
22
+ Question: Find the largest possible real part of\[(75+117i)z+\frac{96+144i}{z}\]where $z$ is a complex number with $|z|=4$.
23
+
24
+ Thinking:
25
+ I notice that this expression is a complex number, so I want to find its real part.<|end_of_thought|>
26
+
27
+ To do that, I need to simplify the expression first.<|end_of_thought|>
28
+
29
+ I can use the fact that $|z|=4$ to rewrite $z$ in polar form: $z=4e^{i\theta}$ where $\theta$ is some angle.<|end_of_thought|>
30
+
31
+ Then, I can use the distributive property and the fact that $i^2=-1$ to expand the expression: \[(75+117i)z+\frac{96+144i}{z}=(75+117i)(4e^{i\theta})+\frac{96+144i}{4e^{i\theta}}\] \[=300e^{i\theta}+468ie^{i\theta}+24e^{-i\theta}+36ie^{-i\theta}\]<|end_of_thought|>
32
+
33
+ Now, I can use the fact that $e^{ix}=\cos x+i\sin x$ and $e^{-ix}=\cos x-i\sin x$ to write the expression in terms of trigonometric functions: \[=300\cos\theta+468i\sin\theta+24\cos\theta-36i\sin\theta\] \[=(324\cos\theta+432\sin\theta)+i(432\sin\theta-324\cos\theta)\]<|end_of_thought|>
34
+
35
+ The real part of this expression is $324\cos\theta+432\sin\theta$, which is a linear combination of $\cos\theta$ and $\sin\theta$.<|end_of_thought|>
36
+
37
+ I know that the maximum value of a linear combination of $\cos\theta$ and $\sin\theta$ occurs when the coefficients are proportional to the direction of the vector $(\cos\theta,\sin\theta)$.<|end_of_thought|>
38
+
39
+ In other words, the maximum value occurs when the expression is equal to the length of the vector times the unit vector in the direction of the vector.<|end_of_thought|>
40
+
41
+ The length of the vector $(\cos\theta,\sin\theta)$ is $\sqrt{\cos^2\theta+\sin^2\theta}=1$, so the maximum value is just the length of the coefficients: $|324\cos\theta+432\sin\theta|$.<|end_of_thought|>
42
+
43
+ To find the maximum value, I need to find the angle that makes the expression equal to the length of the coefficients.<|end_of_thought|>
44
+
45
+ I can use the dot product formula to find this angle: \[(324\cos\theta+432\sin\theta)\cdot (1,1)=(324,432)\cdot (\cos\theta,\sin\theta)=324\cos\theta+432\sin\theta\]<|end_of_thought|>
46
+
47
+ The dot product of two vectors is equal to the product of their lengths and the cosine of the angle between them.<|end_of_thought|>
48
+
49
+ So, I have \[324\cos\theta+432\sin\theta=|324,432|\cos\theta=|324,432|\cos\phi\] where $\phi$ is the angle between the vectors $(324,432)$ and $(\cos\theta,\sin\theta)$.<|end_of_thought|>
50
+
51
+ I can use the inverse cosine function to solve for $\theta$: \[\theta=\cos^{-1}\left(\frac{324\cos\phi+432\sin\phi}{|324,432|}\right)\]<|end_of_thought|>
52
+
53
+ Now, I can plug this value of $\theta$ into the expression for the real part and simplify: \[324\cos\theta+432\sin\theta=324\cos\left(\cos^{-1}\left(\frac{324\cos\phi+432\sin\phi}{|324,432|}\right)\right)+432\sin\left(\cos^{-1}\left(\frac{324\cos\phi+432\sin\phi}{|324,432|}\right)\right)\] \[=324\frac{324\cos\phi+432\sin\phi}{|324,432|}+432\frac{-324\sin\phi+432\cos\phi}{|324,432|}\] \[=\frac{324^2\cos\phi+432^2\sin\phi+432^2\cos\phi-324^2\sin\phi}{|324,432|}\] \[=\frac{(324^2+432^2)\cos\phi+(432^2-324^2)\sin\phi}{|324,432|}\]<|end_of_thought|>
54
+
55
+ I can factor out the common factor of $324^2$ from the numerator and simplify the expression: \[=\frac{324^2(\cos\phi+\sin\phi)+432^2(\sin\phi-\cos\phi)}{|324,432|}\] \[=\frac{324^2\cos\phi+432^2\sin\phi}{|324,432|}\]<|end_of_thought|>
56
+
57
+ This is the maximum possible real part of the expression, and it occurs when $\phi$ is the angle between the vectors $(324,432)$ and $(\cos\theta,\sin\theta)$.<|end_of_thought|>
58
+
59
+ Final output:
60
+ # Answer
61
+
62
+ \frac{324^2\cos\phi+432^2\sin\phi}{|324,432|}
63
+ ```
64
+
65
+ This is how the message format works (you do apply_chat_template on it to get prompt)
66
+ ```json
67
+ [
68
+ {
69
+ "role":"user",
70
+ "content":"Find the largest possible real part of\\[(75+117i)z+\\frac{96+144i}{z}\\]where $z$ is a complex number with $|z|=4$."
71
+ },
72
+ {
73
+ "role":"thinking",
74
+ "content":[
75
+ "I notice that this expression is a complex number, so I want to find its real part.",
76
+ "To do that, I need to simplify the expression first.",
77
+ "I can use the fact that $|z|=4$ to rewrite $z$ in polar form: $z=4e^{i\\theta}$ where $\\theta$ is some angle.",
78
+ "Then, I can use the distributive property and the fact that $i^2=-1$ to expand the expression: \\[(75+117i)z+\\frac{96+144i}{z}=(75+117i)(4e^{i\\theta})+\\frac{96+144i}{4e^{i\\theta}}\\] \\[=300e^{i\\theta}+468ie^{i\\theta}+24e^{-i\\theta}+36ie^{-i\\theta}\\]",
79
+ "Now, I can use the fact that $e^{ix}=\\cos x+i\\sin x$ and $e^{-ix}=\\cos x-i\\sin x$ to write the expression in terms of trigonometric functions: \\[=300\\cos\\theta+468i\\sin\\theta+24\\cos\\theta-36i\\sin\\theta\\] \\[=(324\\cos\\theta+432\\sin\\theta)+i(432\\sin\\theta-324\\cos\\theta)\\]",
80
+ "The real part of this expression is $324\\cos\\theta+432\\sin\\theta$, which is a linear combination of $\\cos\\theta$ and $\\sin\\theta$.",
81
+ "I know that the maximum value of a linear combination of $\\cos\\theta$ and $\\sin\\theta$ occurs when the coefficients are proportional to the direction of the vector $(\\cos\\theta,\\sin\\theta)$.",
82
+ "In other words, the maximum value occurs when the expression is equal to the length of the vector times the unit vector in the direction of the vector.",
83
+ "The length of the vector $(\\cos\\theta,\\sin\\theta)$ is $\\sqrt{\\cos^2\\theta+\\sin^2\\theta}=1$, so the maximum value is just the length of the coefficients: $|324\\cos\\theta+432\\sin\\theta|$.",
84
+ "To find the maximum value, I need to find the angle that makes the expression equal to the length of the coefficients.",
85
+ "I can use the dot product formula to find this angle: \\[(324\\cos\\theta+432\\sin\\theta)\\cdot (1,1)=(324,432)\\cdot (\\cos\\theta,\\sin\\theta)=324\\cos\\theta+432\\sin\\theta\\]",
86
+ "The dot product of two vectors is equal to the product of their lengths and the cosine of the angle between them.",
87
+ "So, I have \\[324\\cos\\theta+432\\sin\\theta=|324,432|\\cos\\theta=|324,432|\\cos\\phi\\] where $\\phi$ is the angle between the vectors $(324,432)$ and $(\\cos\\theta,\\sin\\theta)$.",
88
+ "I can use the inverse cosine function to solve for $\\theta$: \\[\\theta=\\cos^{-1}\\left(\\frac{324\\cos\\phi+432\\sin\\phi}{|324,432|}\\right)\\]",
89
+ "Now, I can plug this value of $\\theta$ into the expression for the real part and simplify: \\[324\\cos\\theta+432\\sin\\theta=324\\cos\\left(\\cos^{-1}\\left(\\frac{324\\cos\\phi+432\\sin\\phi}{|324,432|}\\right)\\right)+432\\sin\\left(\\cos^{-1}\\left(\\frac{324\\cos\\phi+432\\sin\\phi}{|324,432|}\\right)\\right)\\] \\[=324\\frac{324\\cos\\phi+432\\sin\\phi}{|324,432|}+432\\frac{-324\\sin\\phi+432\\cos\\phi}{|324,432|}\\] \\[=\\frac{324^2\\cos\\phi+432^2\\sin\\phi+432^2\\cos\\phi-324^2\\sin\\phi}{|324,432|}\\] \\[=\\frac{(324^2+432^2)\\cos\\phi+(432^2-324^2)\\sin\\phi}{|324,432|}\\]",
90
+ "I can factor out the common factor of $324^2$ from the numerator and simplify the expression: \\[=\\frac{324^2(\\cos\\phi+\\sin\\phi)+432^2(\\sin\\phi-\\cos\\phi)}{|324,432|}\\] \\[=\\frac{324^2\\cos\\phi+432^2\\sin\\phi}{|324,432|}\\]",
91
+ "This is the maximum possible real part of the expression, and it occurs when $\\phi$ is the angle between the vectors $(324,432)$ and $(\\cos\\theta,\\sin\\theta)$."
92
+ ]
93
+ },
94
+ {
95
+ "role":"assistant",
96
+ "content":"# Answer\n\n\\frac{324^2\\cos\\phi+432^2\\sin\\phi}{|324,432|}"
97
+ }
98
+ ]
99
+ ```
100
+
101
  # Uploaded model
102
 
103
  - **Developed by:** Broyojo