Update README.md
Browse files
README.md
CHANGED
@@ -12,6 +12,92 @@ language:
|
|
12 |
- en
|
13 |
---
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# Uploaded model
|
16 |
|
17 |
- **Developed by:** Broyojo
|
|
|
12 |
- en
|
13 |
---
|
14 |
|
15 |
+
# Overview
|
16 |
+
This model was trained using Phase 2 data of PRM800K.
|
17 |
+
It first outputs thoughts in a "thinking" message, with each thought delimited by a `<|end_of_thought|>` token.
|
18 |
+
Then, it makes an assistant message containing the final answer.
|
19 |
+
|
20 |
+
Example:
|
21 |
+
```
|
22 |
+
Question: Find the largest possible real part of\[(75+117i)z+\frac{96+144i}{z}\]where $z$ is a complex number with $|z|=4$.
|
23 |
+
|
24 |
+
Thinking:
|
25 |
+
I notice that this expression is a complex number, so I want to find its real part.<|end_of_thought|>
|
26 |
+
|
27 |
+
To do that, I need to simplify the expression first.<|end_of_thought|>
|
28 |
+
|
29 |
+
I can use the fact that $|z|=4$ to rewrite $z$ in polar form: $z=4e^{i\theta}$ where $\theta$ is some angle.<|end_of_thought|>
|
30 |
+
|
31 |
+
Then, I can use the distributive property and the fact that $i^2=-1$ to expand the expression: \[(75+117i)z+\frac{96+144i}{z}=(75+117i)(4e^{i\theta})+\frac{96+144i}{4e^{i\theta}}\] \[=300e^{i\theta}+468ie^{i\theta}+24e^{-i\theta}+36ie^{-i\theta}\]<|end_of_thought|>
|
32 |
+
|
33 |
+
Now, I can use the fact that $e^{ix}=\cos x+i\sin x$ and $e^{-ix}=\cos x-i\sin x$ to write the expression in terms of trigonometric functions: \[=300\cos\theta+468i\sin\theta+24\cos\theta-36i\sin\theta\] \[=(324\cos\theta+432\sin\theta)+i(432\sin\theta-324\cos\theta)\]<|end_of_thought|>
|
34 |
+
|
35 |
+
The real part of this expression is $324\cos\theta+432\sin\theta$, which is a linear combination of $\cos\theta$ and $\sin\theta$.<|end_of_thought|>
|
36 |
+
|
37 |
+
I know that the maximum value of a linear combination of $\cos\theta$ and $\sin\theta$ occurs when the coefficients are proportional to the direction of the vector $(\cos\theta,\sin\theta)$.<|end_of_thought|>
|
38 |
+
|
39 |
+
In other words, the maximum value occurs when the expression is equal to the length of the vector times the unit vector in the direction of the vector.<|end_of_thought|>
|
40 |
+
|
41 |
+
The length of the vector $(\cos\theta,\sin\theta)$ is $\sqrt{\cos^2\theta+\sin^2\theta}=1$, so the maximum value is just the length of the coefficients: $|324\cos\theta+432\sin\theta|$.<|end_of_thought|>
|
42 |
+
|
43 |
+
To find the maximum value, I need to find the angle that makes the expression equal to the length of the coefficients.<|end_of_thought|>
|
44 |
+
|
45 |
+
I can use the dot product formula to find this angle: \[(324\cos\theta+432\sin\theta)\cdot (1,1)=(324,432)\cdot (\cos\theta,\sin\theta)=324\cos\theta+432\sin\theta\]<|end_of_thought|>
|
46 |
+
|
47 |
+
The dot product of two vectors is equal to the product of their lengths and the cosine of the angle between them.<|end_of_thought|>
|
48 |
+
|
49 |
+
So, I have \[324\cos\theta+432\sin\theta=|324,432|\cos\theta=|324,432|\cos\phi\] where $\phi$ is the angle between the vectors $(324,432)$ and $(\cos\theta,\sin\theta)$.<|end_of_thought|>
|
50 |
+
|
51 |
+
I can use the inverse cosine function to solve for $\theta$: \[\theta=\cos^{-1}\left(\frac{324\cos\phi+432\sin\phi}{|324,432|}\right)\]<|end_of_thought|>
|
52 |
+
|
53 |
+
Now, I can plug this value of $\theta$ into the expression for the real part and simplify: \[324\cos\theta+432\sin\theta=324\cos\left(\cos^{-1}\left(\frac{324\cos\phi+432\sin\phi}{|324,432|}\right)\right)+432\sin\left(\cos^{-1}\left(\frac{324\cos\phi+432\sin\phi}{|324,432|}\right)\right)\] \[=324\frac{324\cos\phi+432\sin\phi}{|324,432|}+432\frac{-324\sin\phi+432\cos\phi}{|324,432|}\] \[=\frac{324^2\cos\phi+432^2\sin\phi+432^2\cos\phi-324^2\sin\phi}{|324,432|}\] \[=\frac{(324^2+432^2)\cos\phi+(432^2-324^2)\sin\phi}{|324,432|}\]<|end_of_thought|>
|
54 |
+
|
55 |
+
I can factor out the common factor of $324^2$ from the numerator and simplify the expression: \[=\frac{324^2(\cos\phi+\sin\phi)+432^2(\sin\phi-\cos\phi)}{|324,432|}\] \[=\frac{324^2\cos\phi+432^2\sin\phi}{|324,432|}\]<|end_of_thought|>
|
56 |
+
|
57 |
+
This is the maximum possible real part of the expression, and it occurs when $\phi$ is the angle between the vectors $(324,432)$ and $(\cos\theta,\sin\theta)$.<|end_of_thought|>
|
58 |
+
|
59 |
+
Final output:
|
60 |
+
# Answer
|
61 |
+
|
62 |
+
\frac{324^2\cos\phi+432^2\sin\phi}{|324,432|}
|
63 |
+
```
|
64 |
+
|
65 |
+
This is how the message format works (you do apply_chat_template on it to get prompt)
|
66 |
+
```json
|
67 |
+
[
|
68 |
+
{
|
69 |
+
"role":"user",
|
70 |
+
"content":"Find the largest possible real part of\\[(75+117i)z+\\frac{96+144i}{z}\\]where $z$ is a complex number with $|z|=4$."
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"role":"thinking",
|
74 |
+
"content":[
|
75 |
+
"I notice that this expression is a complex number, so I want to find its real part.",
|
76 |
+
"To do that, I need to simplify the expression first.",
|
77 |
+
"I can use the fact that $|z|=4$ to rewrite $z$ in polar form: $z=4e^{i\\theta}$ where $\\theta$ is some angle.",
|
78 |
+
"Then, I can use the distributive property and the fact that $i^2=-1$ to expand the expression: \\[(75+117i)z+\\frac{96+144i}{z}=(75+117i)(4e^{i\\theta})+\\frac{96+144i}{4e^{i\\theta}}\\] \\[=300e^{i\\theta}+468ie^{i\\theta}+24e^{-i\\theta}+36ie^{-i\\theta}\\]",
|
79 |
+
"Now, I can use the fact that $e^{ix}=\\cos x+i\\sin x$ and $e^{-ix}=\\cos x-i\\sin x$ to write the expression in terms of trigonometric functions: \\[=300\\cos\\theta+468i\\sin\\theta+24\\cos\\theta-36i\\sin\\theta\\] \\[=(324\\cos\\theta+432\\sin\\theta)+i(432\\sin\\theta-324\\cos\\theta)\\]",
|
80 |
+
"The real part of this expression is $324\\cos\\theta+432\\sin\\theta$, which is a linear combination of $\\cos\\theta$ and $\\sin\\theta$.",
|
81 |
+
"I know that the maximum value of a linear combination of $\\cos\\theta$ and $\\sin\\theta$ occurs when the coefficients are proportional to the direction of the vector $(\\cos\\theta,\\sin\\theta)$.",
|
82 |
+
"In other words, the maximum value occurs when the expression is equal to the length of the vector times the unit vector in the direction of the vector.",
|
83 |
+
"The length of the vector $(\\cos\\theta,\\sin\\theta)$ is $\\sqrt{\\cos^2\\theta+\\sin^2\\theta}=1$, so the maximum value is just the length of the coefficients: $|324\\cos\\theta+432\\sin\\theta|$.",
|
84 |
+
"To find the maximum value, I need to find the angle that makes the expression equal to the length of the coefficients.",
|
85 |
+
"I can use the dot product formula to find this angle: \\[(324\\cos\\theta+432\\sin\\theta)\\cdot (1,1)=(324,432)\\cdot (\\cos\\theta,\\sin\\theta)=324\\cos\\theta+432\\sin\\theta\\]",
|
86 |
+
"The dot product of two vectors is equal to the product of their lengths and the cosine of the angle between them.",
|
87 |
+
"So, I have \\[324\\cos\\theta+432\\sin\\theta=|324,432|\\cos\\theta=|324,432|\\cos\\phi\\] where $\\phi$ is the angle between the vectors $(324,432)$ and $(\\cos\\theta,\\sin\\theta)$.",
|
88 |
+
"I can use the inverse cosine function to solve for $\\theta$: \\[\\theta=\\cos^{-1}\\left(\\frac{324\\cos\\phi+432\\sin\\phi}{|324,432|}\\right)\\]",
|
89 |
+
"Now, I can plug this value of $\\theta$ into the expression for the real part and simplify: \\[324\\cos\\theta+432\\sin\\theta=324\\cos\\left(\\cos^{-1}\\left(\\frac{324\\cos\\phi+432\\sin\\phi}{|324,432|}\\right)\\right)+432\\sin\\left(\\cos^{-1}\\left(\\frac{324\\cos\\phi+432\\sin\\phi}{|324,432|}\\right)\\right)\\] \\[=324\\frac{324\\cos\\phi+432\\sin\\phi}{|324,432|}+432\\frac{-324\\sin\\phi+432\\cos\\phi}{|324,432|}\\] \\[=\\frac{324^2\\cos\\phi+432^2\\sin\\phi+432^2\\cos\\phi-324^2\\sin\\phi}{|324,432|}\\] \\[=\\frac{(324^2+432^2)\\cos\\phi+(432^2-324^2)\\sin\\phi}{|324,432|}\\]",
|
90 |
+
"I can factor out the common factor of $324^2$ from the numerator and simplify the expression: \\[=\\frac{324^2(\\cos\\phi+\\sin\\phi)+432^2(\\sin\\phi-\\cos\\phi)}{|324,432|}\\] \\[=\\frac{324^2\\cos\\phi+432^2\\sin\\phi}{|324,432|}\\]",
|
91 |
+
"This is the maximum possible real part of the expression, and it occurs when $\\phi$ is the angle between the vectors $(324,432)$ and $(\\cos\\theta,\\sin\\theta)$."
|
92 |
+
]
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"role":"assistant",
|
96 |
+
"content":"# Answer\n\n\\frac{324^2\\cos\\phi+432^2\\sin\\phi}{|324,432|}"
|
97 |
+
}
|
98 |
+
]
|
99 |
+
```
|
100 |
+
|
101 |
# Uploaded model
|
102 |
|
103 |
- **Developed by:** Broyojo
|