File size: 1,846 Bytes
d3ede0c a796bba d3ede0c a796bba d3ede0c a796bba d3ede0c a796bba f5bf0d8 d3ede0c a796bba d3ede0c a796bba d3ede0c a796bba d3ede0c a796bba d3ede0c a796bba d3ede0c a796bba d3ede0c a796bba d3ede0c a796bba d3ede0c a796bba d3ede0c a796bba d3ede0c a796bba f5bf0d8 d3ede0c a796bba d3ede0c a796bba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: google/vit-base-patch16-224-in21k
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-in21k-finetuned-lora-food101
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-in21k-finetuned-lora-food101
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2034
- Accuracy: 0.94
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 9 | 0.5701 | 0.866 |
| 2.1862 | 2.0 | 18 | 0.2383 | 0.936 |
| 0.3244 | 3.0 | 27 | 0.2034 | 0.94 |
| 0.1904 | 4.0 | 36 | 0.2018 | 0.932 |
| 0.1786 | 5.0 | 45 | 0.1818 | 0.94 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.39.0
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2 |