File size: 1,846 Bytes
d3ede0c
a796bba
 
 
 
 
 
 
 
 
 
d3ede0c
 
a796bba
 
d3ede0c
a796bba
d3ede0c
a796bba
 
f5bf0d8
 
d3ede0c
a796bba
d3ede0c
a796bba
d3ede0c
a796bba
d3ede0c
a796bba
d3ede0c
a796bba
d3ede0c
a796bba
d3ede0c
a796bba
d3ede0c
a796bba
d3ede0c
a796bba
 
 
 
 
 
 
 
 
 
 
d3ede0c
a796bba
d3ede0c
a796bba
 
f5bf0d8
 
 
 
 
d3ede0c
 
a796bba
d3ede0c
a796bba
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: google/vit-base-patch16-224-in21k
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-in21k-finetuned-lora-food101
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-patch16-224-in21k-finetuned-lora-food101

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2034
- Accuracy: 0.94

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 9    | 0.5701          | 0.866    |
| 2.1862        | 2.0   | 18   | 0.2383          | 0.936    |
| 0.3244        | 3.0   | 27   | 0.2034          | 0.94     |
| 0.1904        | 4.0   | 36   | 0.2018          | 0.932    |
| 0.1786        | 5.0   | 45   | 0.1818          | 0.94     |


### Framework versions

- PEFT 0.10.0
- Transformers 4.39.0
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2