--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: google/vit-base-patch16-224-in21k metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-lora-food101 results: [] --- # vit-base-patch16-224-in21k-finetuned-lora-food101 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2034 - Accuracy: 0.94 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 9 | 0.5701 | 0.866 | | 2.1862 | 2.0 | 18 | 0.2383 | 0.936 | | 0.3244 | 3.0 | 27 | 0.2034 | 0.94 | | 0.1904 | 4.0 | 36 | 0.2018 | 0.932 | | 0.1786 | 5.0 | 45 | 0.1818 | 0.94 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.0 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2