BuddhikaWeerasinghe
commited on
Commit
•
897d711
1
Parent(s):
f57ce52
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: videomae-base-finetuned-ucf101-subset-nimeshbuddhika
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# videomae-base-finetuned-ucf101-subset-nimeshbuddhika
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.1097
|
20 |
+
- Accuracy: 0.9731
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 5e-05
|
40 |
+
- train_batch_size: 2
|
41 |
+
- eval_batch_size: 2
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_ratio: 0.1
|
46 |
+
- training_steps: 1500
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
+
| 2.4285 | 0.1 | 150 | 2.1186 | 0.2032 |
|
53 |
+
| 0.9154 | 1.1 | 300 | 1.1913 | 0.6043 |
|
54 |
+
| 0.4498 | 2.1 | 450 | 0.3770 | 0.8824 |
|
55 |
+
| 0.3012 | 3.1 | 600 | 0.3904 | 0.8663 |
|
56 |
+
| 0.1458 | 4.1 | 750 | 0.8938 | 0.7968 |
|
57 |
+
| 0.0464 | 5.1 | 900 | 0.6181 | 0.8556 |
|
58 |
+
| 0.0274 | 6.1 | 1050 | 0.7182 | 0.8075 |
|
59 |
+
| 0.0022 | 7.1 | 1200 | 0.4525 | 0.8717 |
|
60 |
+
| 0.0302 | 8.1 | 1350 | 0.3172 | 0.9091 |
|
61 |
+
| 0.0166 | 9.1 | 1500 | 0.2898 | 0.8984 |
|
62 |
+
|
63 |
+
|
64 |
+
### Framework versions
|
65 |
+
|
66 |
+
- Transformers 4.30.2
|
67 |
+
- Pytorch 2.0.0
|
68 |
+
- Datasets 2.1.0
|
69 |
+
- Tokenizers 0.13.3
|