Bugsec commited on
Commit
ae775ba
1 Parent(s): 85b99a9

End of training

Browse files
Files changed (1) hide show
  1. README.md +13 -13
README.md CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.2513
24
- - Accuracy: 0.9388
25
- - F1: 0.9313
26
- - Precision: 0.9839
27
- - Recall: 0.8841
28
 
29
  ## Model description
30
 
@@ -51,7 +51,7 @@ The following hyperparameters were used during training:
51
  - total_train_batch_size: 64
52
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
  - lr_scheduler_type: linear
54
- - lr_scheduler_warmup_steps: 10
55
  - num_epochs: 5
56
  - mixed_precision_training: Native AMP
57
 
@@ -59,16 +59,16 @@ The following hyperparameters were used during training:
59
 
60
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
61
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
62
- | 0.1234 | 0.97 | 9 | 0.2398 | 0.9184 | 0.9155 | 0.8904 | 0.9420 |
63
- | 0.1959 | 1.95 | 18 | 0.4097 | 0.8435 | 0.8535 | 0.7614 | 0.9710 |
64
- | 0.1138 | 2.92 | 27 | 0.4617 | 0.8639 | 0.8305 | 1.0 | 0.7101 |
65
- | 0.1014 | 4.0 | 37 | 0.2190 | 0.9388 | 0.9323 | 0.9688 | 0.8986 |
66
- | 0.0477 | 4.86 | 45 | 0.2513 | 0.9388 | 0.9313 | 0.9839 | 0.8841 |
67
 
68
 
69
  ### Framework versions
70
 
71
- - Transformers 4.38.2
72
- - Pytorch 2.1.0+cu121
73
  - Datasets 2.18.0
74
  - Tokenizers 0.15.2
 
20
 
21
  This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.2193
24
+ - Accuracy: 0.9437
25
+ - F1: 0.9398
26
+ - Precision: 0.9921
27
+ - Recall: 0.8929
28
 
29
  ## Model description
30
 
 
51
  - total_train_batch_size: 64
52
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
  - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_steps: 100
55
  - num_epochs: 5
56
  - mixed_precision_training: Native AMP
57
 
 
59
 
60
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
61
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
62
+ | 0.7008 | 0.96 | 17 | 0.6755 | 0.5704 | 0.2375 | 0.95 | 0.1357 |
63
+ | 0.578 | 1.97 | 35 | 0.5885 | 0.6866 | 0.5822 | 0.8493 | 0.4429 |
64
+ | 0.4858 | 2.99 | 53 | 0.4109 | 0.8239 | 0.8344 | 0.7778 | 0.9 |
65
+ | 0.2615 | 4.0 | 71 | 0.2202 | 0.9401 | 0.9373 | 0.9695 | 0.9071 |
66
+ | 0.1685 | 4.79 | 85 | 0.2193 | 0.9437 | 0.9398 | 0.9921 | 0.8929 |
67
 
68
 
69
  ### Framework versions
70
 
71
+ - Transformers 4.39.3
72
+ - Pytorch 2.2.1+cu121
73
  - Datasets 2.18.0
74
  - Tokenizers 0.15.2