End of training
Browse files
README.md
CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Accuracy: 0.
|
25 |
-
- F1: 0.
|
26 |
-
- Precision: 0.
|
27 |
-
- Recall: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -51,7 +51,7 @@ The following hyperparameters were used during training:
|
|
51 |
- total_train_batch_size: 64
|
52 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
- lr_scheduler_type: linear
|
54 |
-
- lr_scheduler_warmup_steps:
|
55 |
- num_epochs: 5
|
56 |
- mixed_precision_training: Native AMP
|
57 |
|
@@ -59,16 +59,16 @@ The following hyperparameters were used during training:
|
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
61 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
|
68 |
|
69 |
### Framework versions
|
70 |
|
71 |
-
- Transformers 4.
|
72 |
-
- Pytorch 2.1
|
73 |
- Datasets 2.18.0
|
74 |
- Tokenizers 0.15.2
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.2193
|
24 |
+
- Accuracy: 0.9437
|
25 |
+
- F1: 0.9398
|
26 |
+
- Precision: 0.9921
|
27 |
+
- Recall: 0.8929
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
51 |
- total_train_batch_size: 64
|
52 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
- lr_scheduler_type: linear
|
54 |
+
- lr_scheduler_warmup_steps: 100
|
55 |
- num_epochs: 5
|
56 |
- mixed_precision_training: Native AMP
|
57 |
|
|
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
61 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
62 |
+
| 0.7008 | 0.96 | 17 | 0.6755 | 0.5704 | 0.2375 | 0.95 | 0.1357 |
|
63 |
+
| 0.578 | 1.97 | 35 | 0.5885 | 0.6866 | 0.5822 | 0.8493 | 0.4429 |
|
64 |
+
| 0.4858 | 2.99 | 53 | 0.4109 | 0.8239 | 0.8344 | 0.7778 | 0.9 |
|
65 |
+
| 0.2615 | 4.0 | 71 | 0.2202 | 0.9401 | 0.9373 | 0.9695 | 0.9071 |
|
66 |
+
| 0.1685 | 4.79 | 85 | 0.2193 | 0.9437 | 0.9398 | 0.9921 | 0.8929 |
|
67 |
|
68 |
|
69 |
### Framework versions
|
70 |
|
71 |
+
- Transformers 4.39.3
|
72 |
+
- Pytorch 2.2.1+cu121
|
73 |
- Datasets 2.18.0
|
74 |
- Tokenizers 0.15.2
|