--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: fine_tuned_deberta results: [] --- # fine_tuned_deberta This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2513 - Accuracy: 0.9388 - F1: 0.9313 - Precision: 0.9839 - Recall: 0.8841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1234 | 0.97 | 9 | 0.2398 | 0.9184 | 0.9155 | 0.8904 | 0.9420 | | 0.1959 | 1.95 | 18 | 0.4097 | 0.8435 | 0.8535 | 0.7614 | 0.9710 | | 0.1138 | 2.92 | 27 | 0.4617 | 0.8639 | 0.8305 | 1.0 | 0.7101 | | 0.1014 | 4.0 | 37 | 0.2190 | 0.9388 | 0.9323 | 0.9688 | 0.8986 | | 0.0477 | 4.86 | 45 | 0.2513 | 0.9388 | 0.9313 | 0.9839 | 0.8841 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2