Byanka commited on
Commit
1df212a
1 Parent(s): 8282d7f

commit from cp400

Browse files
README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: meta-llama/Llama-2-7b-chat-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.2
adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/Llama-2-7b-chat-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 8,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "q_proj",
20
+ "down_proj",
21
+ "k_proj",
22
+ "v_proj",
23
+ "o_proj",
24
+ "up_proj",
25
+ "gate_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d575312196cad8b27f8126c5cd8ab94d70152f5aab4a32476bd79cbd442abbe0
3
+ size 80013120
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a6c1778038a67d0e25990e97182baca5a99869cd7bd11a4da10e61e7d05b527
3
+ size 40570772
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7eb5af75cbb7702914d14c3eae35b3e95c4740f5af20e550edf9c4327f4f11ec
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b44cd6af8be2bf07dffefe3fd8b4a71ea5dcc016e9ba568489db94f1fa71b011
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ }
27
+ },
28
+ "bos_token": "<s>",
29
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
30
+ "clean_up_tokenization_spaces": false,
31
+ "eos_token": "</s>",
32
+ "legacy": false,
33
+ "model_max_length": 1000000000000000019884624838656,
34
+ "pad_token": "</s>",
35
+ "padding_side": "right",
36
+ "sp_model_kwargs": {},
37
+ "tokenizer_class": "LlamaTokenizer",
38
+ "unk_token": "<unk>",
39
+ "use_default_system_prompt": false
40
+ }
trainer_state.json ADDED
@@ -0,0 +1,2499 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.3731473684310913,
3
+ "best_model_checkpoint": "outputs_llama-2/checkpoint-400",
4
+ "epoch": 0.6170458927882762,
5
+ "eval_steps": 40,
6
+ "global_step": 400,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 2e-05,
14
+ "loss": 3.4868,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 4e-05,
20
+ "loss": 3.7961,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.0,
25
+ "learning_rate": 6e-05,
26
+ "loss": 3.9088,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 8e-05,
32
+ "loss": 3.4984,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 0.0001,
38
+ "loss": 3.2276,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 0.00012,
44
+ "loss": 3.0655,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 0.00014,
50
+ "loss": 3.3618,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "learning_rate": 0.00016,
56
+ "loss": 2.7163,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.01,
61
+ "learning_rate": 0.00018,
62
+ "loss": 2.5164,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 0.0002,
68
+ "loss": 2.4623,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 0.00019968652037617558,
74
+ "loss": 2.5072,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 0.0001993730407523511,
80
+ "loss": 2.3718,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.02,
85
+ "learning_rate": 0.00019905956112852667,
86
+ "loss": 1.9166,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.02,
91
+ "learning_rate": 0.0001987460815047022,
92
+ "loss": 1.8158,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.02,
97
+ "learning_rate": 0.00019843260188087775,
98
+ "loss": 1.6101,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.02,
103
+ "learning_rate": 0.0001981191222570533,
104
+ "loss": 1.7501,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.03,
109
+ "learning_rate": 0.00019780564263322884,
110
+ "loss": 1.8495,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.03,
115
+ "learning_rate": 0.0001974921630094044,
116
+ "loss": 1.7858,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.03,
121
+ "learning_rate": 0.00019717868338557995,
122
+ "loss": 1.511,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.03,
127
+ "learning_rate": 0.0001968652037617555,
128
+ "loss": 1.3787,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.03,
133
+ "learning_rate": 0.00019655172413793104,
134
+ "loss": 1.8197,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.03,
139
+ "learning_rate": 0.0001962382445141066,
140
+ "loss": 1.4238,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.04,
145
+ "learning_rate": 0.00019592476489028212,
146
+ "loss": 1.6311,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.04,
151
+ "learning_rate": 0.0001956112852664577,
152
+ "loss": 1.7413,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.04,
157
+ "learning_rate": 0.00019529780564263324,
158
+ "loss": 1.6356,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.04,
163
+ "learning_rate": 0.00019498432601880878,
164
+ "loss": 1.5826,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.04,
169
+ "learning_rate": 0.00019467084639498435,
170
+ "loss": 1.3187,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.04,
175
+ "learning_rate": 0.00019435736677115987,
176
+ "loss": 1.9504,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.04,
181
+ "learning_rate": 0.00019404388714733544,
182
+ "loss": 1.5303,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.05,
187
+ "learning_rate": 0.00019373040752351098,
188
+ "loss": 1.9262,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.05,
193
+ "learning_rate": 0.00019341692789968652,
194
+ "loss": 1.3492,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.05,
199
+ "learning_rate": 0.0001931034482758621,
200
+ "loss": 1.5133,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.05,
205
+ "learning_rate": 0.0001927899686520376,
206
+ "loss": 1.7638,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.05,
211
+ "learning_rate": 0.00019247648902821318,
212
+ "loss": 1.4146,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.05,
217
+ "learning_rate": 0.00019216300940438872,
218
+ "loss": 2.0048,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.06,
223
+ "learning_rate": 0.00019184952978056427,
224
+ "loss": 1.1199,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.06,
229
+ "learning_rate": 0.0001915360501567398,
230
+ "loss": 1.5077,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.06,
235
+ "learning_rate": 0.00019122257053291538,
236
+ "loss": 1.8042,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.06,
241
+ "learning_rate": 0.00019090909090909092,
242
+ "loss": 1.3575,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.06,
247
+ "learning_rate": 0.00019059561128526647,
248
+ "loss": 1.6653,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.06,
253
+ "eval_loss": 1.4491230249404907,
254
+ "eval_runtime": 866.4575,
255
+ "eval_samples_per_second": 1.16,
256
+ "eval_steps_per_second": 1.16,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 0.06,
261
+ "learning_rate": 0.000190282131661442,
262
+ "loss": 1.0084,
263
+ "step": 41
264
+ },
265
+ {
266
+ "epoch": 0.06,
267
+ "learning_rate": 0.00018996865203761755,
268
+ "loss": 1.841,
269
+ "step": 42
270
+ },
271
+ {
272
+ "epoch": 0.07,
273
+ "learning_rate": 0.00018965517241379312,
274
+ "loss": 1.5954,
275
+ "step": 43
276
+ },
277
+ {
278
+ "epoch": 0.07,
279
+ "learning_rate": 0.00018934169278996866,
280
+ "loss": 1.4138,
281
+ "step": 44
282
+ },
283
+ {
284
+ "epoch": 0.07,
285
+ "learning_rate": 0.0001890282131661442,
286
+ "loss": 1.6798,
287
+ "step": 45
288
+ },
289
+ {
290
+ "epoch": 0.07,
291
+ "learning_rate": 0.00018871473354231978,
292
+ "loss": 1.2323,
293
+ "step": 46
294
+ },
295
+ {
296
+ "epoch": 0.07,
297
+ "learning_rate": 0.0001884012539184953,
298
+ "loss": 1.1051,
299
+ "step": 47
300
+ },
301
+ {
302
+ "epoch": 0.07,
303
+ "learning_rate": 0.00018808777429467086,
304
+ "loss": 1.2045,
305
+ "step": 48
306
+ },
307
+ {
308
+ "epoch": 0.08,
309
+ "learning_rate": 0.0001877742946708464,
310
+ "loss": 1.7915,
311
+ "step": 49
312
+ },
313
+ {
314
+ "epoch": 0.08,
315
+ "learning_rate": 0.00018746081504702195,
316
+ "loss": 1.5733,
317
+ "step": 50
318
+ },
319
+ {
320
+ "epoch": 0.08,
321
+ "learning_rate": 0.00018714733542319752,
322
+ "loss": 1.1321,
323
+ "step": 51
324
+ },
325
+ {
326
+ "epoch": 0.08,
327
+ "learning_rate": 0.00018683385579937304,
328
+ "loss": 1.5533,
329
+ "step": 52
330
+ },
331
+ {
332
+ "epoch": 0.08,
333
+ "learning_rate": 0.0001865203761755486,
334
+ "loss": 1.6388,
335
+ "step": 53
336
+ },
337
+ {
338
+ "epoch": 0.08,
339
+ "learning_rate": 0.00018620689655172415,
340
+ "loss": 1.7207,
341
+ "step": 54
342
+ },
343
+ {
344
+ "epoch": 0.08,
345
+ "learning_rate": 0.0001858934169278997,
346
+ "loss": 1.6191,
347
+ "step": 55
348
+ },
349
+ {
350
+ "epoch": 0.09,
351
+ "learning_rate": 0.00018557993730407524,
352
+ "loss": 1.1936,
353
+ "step": 56
354
+ },
355
+ {
356
+ "epoch": 0.09,
357
+ "learning_rate": 0.0001852664576802508,
358
+ "loss": 0.8021,
359
+ "step": 57
360
+ },
361
+ {
362
+ "epoch": 0.09,
363
+ "learning_rate": 0.00018495297805642635,
364
+ "loss": 1.6352,
365
+ "step": 58
366
+ },
367
+ {
368
+ "epoch": 0.09,
369
+ "learning_rate": 0.0001846394984326019,
370
+ "loss": 1.3609,
371
+ "step": 59
372
+ },
373
+ {
374
+ "epoch": 0.09,
375
+ "learning_rate": 0.00018432601880877744,
376
+ "loss": 1.1234,
377
+ "step": 60
378
+ },
379
+ {
380
+ "epoch": 0.09,
381
+ "learning_rate": 0.00018401253918495298,
382
+ "loss": 1.4164,
383
+ "step": 61
384
+ },
385
+ {
386
+ "epoch": 0.1,
387
+ "learning_rate": 0.00018369905956112855,
388
+ "loss": 1.2983,
389
+ "step": 62
390
+ },
391
+ {
392
+ "epoch": 0.1,
393
+ "learning_rate": 0.00018338557993730406,
394
+ "loss": 1.6532,
395
+ "step": 63
396
+ },
397
+ {
398
+ "epoch": 0.1,
399
+ "learning_rate": 0.00018307210031347963,
400
+ "loss": 0.8675,
401
+ "step": 64
402
+ },
403
+ {
404
+ "epoch": 0.1,
405
+ "learning_rate": 0.00018275862068965518,
406
+ "loss": 1.3623,
407
+ "step": 65
408
+ },
409
+ {
410
+ "epoch": 0.1,
411
+ "learning_rate": 0.00018244514106583072,
412
+ "loss": 1.7138,
413
+ "step": 66
414
+ },
415
+ {
416
+ "epoch": 0.1,
417
+ "learning_rate": 0.0001821316614420063,
418
+ "loss": 1.6071,
419
+ "step": 67
420
+ },
421
+ {
422
+ "epoch": 0.1,
423
+ "learning_rate": 0.00018181818181818183,
424
+ "loss": 1.3497,
425
+ "step": 68
426
+ },
427
+ {
428
+ "epoch": 0.11,
429
+ "learning_rate": 0.00018150470219435738,
430
+ "loss": 1.7226,
431
+ "step": 69
432
+ },
433
+ {
434
+ "epoch": 0.11,
435
+ "learning_rate": 0.00018119122257053292,
436
+ "loss": 1.5776,
437
+ "step": 70
438
+ },
439
+ {
440
+ "epoch": 0.11,
441
+ "learning_rate": 0.00018087774294670846,
442
+ "loss": 1.4415,
443
+ "step": 71
444
+ },
445
+ {
446
+ "epoch": 0.11,
447
+ "learning_rate": 0.00018056426332288403,
448
+ "loss": 1.3818,
449
+ "step": 72
450
+ },
451
+ {
452
+ "epoch": 0.11,
453
+ "learning_rate": 0.00018025078369905958,
454
+ "loss": 1.14,
455
+ "step": 73
456
+ },
457
+ {
458
+ "epoch": 0.11,
459
+ "learning_rate": 0.00017993730407523512,
460
+ "loss": 1.1541,
461
+ "step": 74
462
+ },
463
+ {
464
+ "epoch": 0.12,
465
+ "learning_rate": 0.00017962382445141066,
466
+ "loss": 1.4013,
467
+ "step": 75
468
+ },
469
+ {
470
+ "epoch": 0.12,
471
+ "learning_rate": 0.0001793103448275862,
472
+ "loss": 2.0154,
473
+ "step": 76
474
+ },
475
+ {
476
+ "epoch": 0.12,
477
+ "learning_rate": 0.00017899686520376175,
478
+ "loss": 1.4794,
479
+ "step": 77
480
+ },
481
+ {
482
+ "epoch": 0.12,
483
+ "learning_rate": 0.00017868338557993732,
484
+ "loss": 1.4989,
485
+ "step": 78
486
+ },
487
+ {
488
+ "epoch": 0.12,
489
+ "learning_rate": 0.00017836990595611286,
490
+ "loss": 1.6,
491
+ "step": 79
492
+ },
493
+ {
494
+ "epoch": 0.12,
495
+ "learning_rate": 0.0001780564263322884,
496
+ "loss": 1.3883,
497
+ "step": 80
498
+ },
499
+ {
500
+ "epoch": 0.12,
501
+ "eval_loss": 1.4160501956939697,
502
+ "eval_runtime": 865.4029,
503
+ "eval_samples_per_second": 1.161,
504
+ "eval_steps_per_second": 1.161,
505
+ "step": 80
506
+ },
507
+ {
508
+ "epoch": 0.12,
509
+ "learning_rate": 0.00017774294670846398,
510
+ "loss": 1.0814,
511
+ "step": 81
512
+ },
513
+ {
514
+ "epoch": 0.13,
515
+ "learning_rate": 0.0001774294670846395,
516
+ "loss": 1.4005,
517
+ "step": 82
518
+ },
519
+ {
520
+ "epoch": 0.13,
521
+ "learning_rate": 0.00017711598746081506,
522
+ "loss": 1.576,
523
+ "step": 83
524
+ },
525
+ {
526
+ "epoch": 0.13,
527
+ "learning_rate": 0.0001768025078369906,
528
+ "loss": 1.6388,
529
+ "step": 84
530
+ },
531
+ {
532
+ "epoch": 0.13,
533
+ "learning_rate": 0.00017648902821316615,
534
+ "loss": 1.3295,
535
+ "step": 85
536
+ },
537
+ {
538
+ "epoch": 0.13,
539
+ "learning_rate": 0.00017617554858934172,
540
+ "loss": 1.7523,
541
+ "step": 86
542
+ },
543
+ {
544
+ "epoch": 0.13,
545
+ "learning_rate": 0.00017586206896551723,
546
+ "loss": 1.7137,
547
+ "step": 87
548
+ },
549
+ {
550
+ "epoch": 0.14,
551
+ "learning_rate": 0.0001755485893416928,
552
+ "loss": 1.3514,
553
+ "step": 88
554
+ },
555
+ {
556
+ "epoch": 0.14,
557
+ "learning_rate": 0.00017523510971786835,
558
+ "loss": 1.5445,
559
+ "step": 89
560
+ },
561
+ {
562
+ "epoch": 0.14,
563
+ "learning_rate": 0.0001749216300940439,
564
+ "loss": 1.454,
565
+ "step": 90
566
+ },
567
+ {
568
+ "epoch": 0.14,
569
+ "learning_rate": 0.00017460815047021943,
570
+ "loss": 1.4337,
571
+ "step": 91
572
+ },
573
+ {
574
+ "epoch": 0.14,
575
+ "learning_rate": 0.000174294670846395,
576
+ "loss": 1.572,
577
+ "step": 92
578
+ },
579
+ {
580
+ "epoch": 0.14,
581
+ "learning_rate": 0.00017398119122257055,
582
+ "loss": 1.3782,
583
+ "step": 93
584
+ },
585
+ {
586
+ "epoch": 0.15,
587
+ "learning_rate": 0.0001736677115987461,
588
+ "loss": 1.3746,
589
+ "step": 94
590
+ },
591
+ {
592
+ "epoch": 0.15,
593
+ "learning_rate": 0.00017335423197492163,
594
+ "loss": 1.5409,
595
+ "step": 95
596
+ },
597
+ {
598
+ "epoch": 0.15,
599
+ "learning_rate": 0.00017304075235109718,
600
+ "loss": 1.5832,
601
+ "step": 96
602
+ },
603
+ {
604
+ "epoch": 0.15,
605
+ "learning_rate": 0.00017272727272727275,
606
+ "loss": 1.3129,
607
+ "step": 97
608
+ },
609
+ {
610
+ "epoch": 0.15,
611
+ "learning_rate": 0.00017241379310344826,
612
+ "loss": 1.3966,
613
+ "step": 98
614
+ },
615
+ {
616
+ "epoch": 0.15,
617
+ "learning_rate": 0.00017210031347962383,
618
+ "loss": 1.7874,
619
+ "step": 99
620
+ },
621
+ {
622
+ "epoch": 0.15,
623
+ "learning_rate": 0.0001717868338557994,
624
+ "loss": 1.0902,
625
+ "step": 100
626
+ },
627
+ {
628
+ "epoch": 0.16,
629
+ "learning_rate": 0.00017147335423197492,
630
+ "loss": 1.617,
631
+ "step": 101
632
+ },
633
+ {
634
+ "epoch": 0.16,
635
+ "learning_rate": 0.0001711598746081505,
636
+ "loss": 1.2597,
637
+ "step": 102
638
+ },
639
+ {
640
+ "epoch": 0.16,
641
+ "learning_rate": 0.00017084639498432603,
642
+ "loss": 1.5788,
643
+ "step": 103
644
+ },
645
+ {
646
+ "epoch": 0.16,
647
+ "learning_rate": 0.00017053291536050158,
648
+ "loss": 1.3218,
649
+ "step": 104
650
+ },
651
+ {
652
+ "epoch": 0.16,
653
+ "learning_rate": 0.00017021943573667712,
654
+ "loss": 1.3153,
655
+ "step": 105
656
+ },
657
+ {
658
+ "epoch": 0.16,
659
+ "learning_rate": 0.00016990595611285266,
660
+ "loss": 1.2564,
661
+ "step": 106
662
+ },
663
+ {
664
+ "epoch": 0.17,
665
+ "learning_rate": 0.00016959247648902823,
666
+ "loss": 1.8,
667
+ "step": 107
668
+ },
669
+ {
670
+ "epoch": 0.17,
671
+ "learning_rate": 0.00016927899686520377,
672
+ "loss": 1.3895,
673
+ "step": 108
674
+ },
675
+ {
676
+ "epoch": 0.17,
677
+ "learning_rate": 0.00016896551724137932,
678
+ "loss": 1.3897,
679
+ "step": 109
680
+ },
681
+ {
682
+ "epoch": 0.17,
683
+ "learning_rate": 0.00016865203761755486,
684
+ "loss": 1.4656,
685
+ "step": 110
686
+ },
687
+ {
688
+ "epoch": 0.17,
689
+ "learning_rate": 0.0001683385579937304,
690
+ "loss": 0.7588,
691
+ "step": 111
692
+ },
693
+ {
694
+ "epoch": 0.17,
695
+ "learning_rate": 0.00016802507836990597,
696
+ "loss": 0.9988,
697
+ "step": 112
698
+ },
699
+ {
700
+ "epoch": 0.17,
701
+ "learning_rate": 0.00016771159874608152,
702
+ "loss": 1.8016,
703
+ "step": 113
704
+ },
705
+ {
706
+ "epoch": 0.18,
707
+ "learning_rate": 0.00016739811912225706,
708
+ "loss": 1.5793,
709
+ "step": 114
710
+ },
711
+ {
712
+ "epoch": 0.18,
713
+ "learning_rate": 0.0001670846394984326,
714
+ "loss": 1.5504,
715
+ "step": 115
716
+ },
717
+ {
718
+ "epoch": 0.18,
719
+ "learning_rate": 0.00016677115987460817,
720
+ "loss": 1.3969,
721
+ "step": 116
722
+ },
723
+ {
724
+ "epoch": 0.18,
725
+ "learning_rate": 0.0001664576802507837,
726
+ "loss": 1.0452,
727
+ "step": 117
728
+ },
729
+ {
730
+ "epoch": 0.18,
731
+ "learning_rate": 0.00016614420062695926,
732
+ "loss": 1.7136,
733
+ "step": 118
734
+ },
735
+ {
736
+ "epoch": 0.18,
737
+ "learning_rate": 0.0001658307210031348,
738
+ "loss": 1.6306,
739
+ "step": 119
740
+ },
741
+ {
742
+ "epoch": 0.19,
743
+ "learning_rate": 0.00016551724137931035,
744
+ "loss": 1.2302,
745
+ "step": 120
746
+ },
747
+ {
748
+ "epoch": 0.19,
749
+ "eval_loss": 1.4042863845825195,
750
+ "eval_runtime": 866.713,
751
+ "eval_samples_per_second": 1.16,
752
+ "eval_steps_per_second": 1.16,
753
+ "step": 120
754
+ },
755
+ {
756
+ "epoch": 0.19,
757
+ "learning_rate": 0.00016520376175548592,
758
+ "loss": 1.6392,
759
+ "step": 121
760
+ },
761
+ {
762
+ "epoch": 0.19,
763
+ "learning_rate": 0.00016489028213166143,
764
+ "loss": 1.7501,
765
+ "step": 122
766
+ },
767
+ {
768
+ "epoch": 0.19,
769
+ "learning_rate": 0.000164576802507837,
770
+ "loss": 1.3811,
771
+ "step": 123
772
+ },
773
+ {
774
+ "epoch": 0.19,
775
+ "learning_rate": 0.00016426332288401255,
776
+ "loss": 1.2695,
777
+ "step": 124
778
+ },
779
+ {
780
+ "epoch": 0.19,
781
+ "learning_rate": 0.0001639498432601881,
782
+ "loss": 1.0973,
783
+ "step": 125
784
+ },
785
+ {
786
+ "epoch": 0.19,
787
+ "learning_rate": 0.00016363636363636366,
788
+ "loss": 1.2281,
789
+ "step": 126
790
+ },
791
+ {
792
+ "epoch": 0.2,
793
+ "learning_rate": 0.0001633228840125392,
794
+ "loss": 1.8312,
795
+ "step": 127
796
+ },
797
+ {
798
+ "epoch": 0.2,
799
+ "learning_rate": 0.00016300940438871475,
800
+ "loss": 1.2764,
801
+ "step": 128
802
+ },
803
+ {
804
+ "epoch": 0.2,
805
+ "learning_rate": 0.0001626959247648903,
806
+ "loss": 1.3624,
807
+ "step": 129
808
+ },
809
+ {
810
+ "epoch": 0.2,
811
+ "learning_rate": 0.00016238244514106583,
812
+ "loss": 1.2449,
813
+ "step": 130
814
+ },
815
+ {
816
+ "epoch": 0.2,
817
+ "learning_rate": 0.00016206896551724137,
818
+ "loss": 1.2079,
819
+ "step": 131
820
+ },
821
+ {
822
+ "epoch": 0.2,
823
+ "learning_rate": 0.00016175548589341694,
824
+ "loss": 1.0546,
825
+ "step": 132
826
+ },
827
+ {
828
+ "epoch": 0.21,
829
+ "learning_rate": 0.0001614420062695925,
830
+ "loss": 1.1052,
831
+ "step": 133
832
+ },
833
+ {
834
+ "epoch": 0.21,
835
+ "learning_rate": 0.00016112852664576803,
836
+ "loss": 1.789,
837
+ "step": 134
838
+ },
839
+ {
840
+ "epoch": 0.21,
841
+ "learning_rate": 0.0001608150470219436,
842
+ "loss": 1.357,
843
+ "step": 135
844
+ },
845
+ {
846
+ "epoch": 0.21,
847
+ "learning_rate": 0.00016050156739811912,
848
+ "loss": 1.6354,
849
+ "step": 136
850
+ },
851
+ {
852
+ "epoch": 0.21,
853
+ "learning_rate": 0.0001601880877742947,
854
+ "loss": 1.4717,
855
+ "step": 137
856
+ },
857
+ {
858
+ "epoch": 0.21,
859
+ "learning_rate": 0.00015987460815047023,
860
+ "loss": 1.7371,
861
+ "step": 138
862
+ },
863
+ {
864
+ "epoch": 0.21,
865
+ "learning_rate": 0.00015956112852664577,
866
+ "loss": 1.5482,
867
+ "step": 139
868
+ },
869
+ {
870
+ "epoch": 0.22,
871
+ "learning_rate": 0.00015924764890282134,
872
+ "loss": 1.202,
873
+ "step": 140
874
+ },
875
+ {
876
+ "epoch": 0.22,
877
+ "learning_rate": 0.00015893416927899686,
878
+ "loss": 1.1362,
879
+ "step": 141
880
+ },
881
+ {
882
+ "epoch": 0.22,
883
+ "learning_rate": 0.00015862068965517243,
884
+ "loss": 1.2072,
885
+ "step": 142
886
+ },
887
+ {
888
+ "epoch": 0.22,
889
+ "learning_rate": 0.00015830721003134797,
890
+ "loss": 1.5035,
891
+ "step": 143
892
+ },
893
+ {
894
+ "epoch": 0.22,
895
+ "learning_rate": 0.00015799373040752352,
896
+ "loss": 1.6734,
897
+ "step": 144
898
+ },
899
+ {
900
+ "epoch": 0.22,
901
+ "learning_rate": 0.00015768025078369906,
902
+ "loss": 1.3708,
903
+ "step": 145
904
+ },
905
+ {
906
+ "epoch": 0.23,
907
+ "learning_rate": 0.0001573667711598746,
908
+ "loss": 1.3016,
909
+ "step": 146
910
+ },
911
+ {
912
+ "epoch": 0.23,
913
+ "learning_rate": 0.00015705329153605017,
914
+ "loss": 0.6789,
915
+ "step": 147
916
+ },
917
+ {
918
+ "epoch": 0.23,
919
+ "learning_rate": 0.00015673981191222572,
920
+ "loss": 1.2877,
921
+ "step": 148
922
+ },
923
+ {
924
+ "epoch": 0.23,
925
+ "learning_rate": 0.00015642633228840126,
926
+ "loss": 1.3416,
927
+ "step": 149
928
+ },
929
+ {
930
+ "epoch": 0.23,
931
+ "learning_rate": 0.0001561128526645768,
932
+ "loss": 1.1312,
933
+ "step": 150
934
+ },
935
+ {
936
+ "epoch": 0.23,
937
+ "learning_rate": 0.00015579937304075237,
938
+ "loss": 1.2825,
939
+ "step": 151
940
+ },
941
+ {
942
+ "epoch": 0.23,
943
+ "learning_rate": 0.0001554858934169279,
944
+ "loss": 0.9458,
945
+ "step": 152
946
+ },
947
+ {
948
+ "epoch": 0.24,
949
+ "learning_rate": 0.00015517241379310346,
950
+ "loss": 1.4786,
951
+ "step": 153
952
+ },
953
+ {
954
+ "epoch": 0.24,
955
+ "learning_rate": 0.000154858934169279,
956
+ "loss": 1.734,
957
+ "step": 154
958
+ },
959
+ {
960
+ "epoch": 0.24,
961
+ "learning_rate": 0.00015454545454545454,
962
+ "loss": 1.302,
963
+ "step": 155
964
+ },
965
+ {
966
+ "epoch": 0.24,
967
+ "learning_rate": 0.00015423197492163011,
968
+ "loss": 1.3067,
969
+ "step": 156
970
+ },
971
+ {
972
+ "epoch": 0.24,
973
+ "learning_rate": 0.00015391849529780563,
974
+ "loss": 1.2758,
975
+ "step": 157
976
+ },
977
+ {
978
+ "epoch": 0.24,
979
+ "learning_rate": 0.0001536050156739812,
980
+ "loss": 0.4271,
981
+ "step": 158
982
+ },
983
+ {
984
+ "epoch": 0.25,
985
+ "learning_rate": 0.00015329153605015674,
986
+ "loss": 1.3511,
987
+ "step": 159
988
+ },
989
+ {
990
+ "epoch": 0.25,
991
+ "learning_rate": 0.0001529780564263323,
992
+ "loss": 1.2637,
993
+ "step": 160
994
+ },
995
+ {
996
+ "epoch": 0.25,
997
+ "eval_loss": 1.3989219665527344,
998
+ "eval_runtime": 866.2996,
999
+ "eval_samples_per_second": 1.16,
1000
+ "eval_steps_per_second": 1.16,
1001
+ "step": 160
1002
+ },
1003
+ {
1004
+ "epoch": 0.25,
1005
+ "learning_rate": 0.00015266457680250786,
1006
+ "loss": 1.2459,
1007
+ "step": 161
1008
+ },
1009
+ {
1010
+ "epoch": 0.25,
1011
+ "learning_rate": 0.0001523510971786834,
1012
+ "loss": 1.1139,
1013
+ "step": 162
1014
+ },
1015
+ {
1016
+ "epoch": 0.25,
1017
+ "learning_rate": 0.00015203761755485894,
1018
+ "loss": 1.7787,
1019
+ "step": 163
1020
+ },
1021
+ {
1022
+ "epoch": 0.25,
1023
+ "learning_rate": 0.00015172413793103449,
1024
+ "loss": 1.8546,
1025
+ "step": 164
1026
+ },
1027
+ {
1028
+ "epoch": 0.25,
1029
+ "learning_rate": 0.00015141065830721003,
1030
+ "loss": 1.3567,
1031
+ "step": 165
1032
+ },
1033
+ {
1034
+ "epoch": 0.26,
1035
+ "learning_rate": 0.00015109717868338557,
1036
+ "loss": 1.1376,
1037
+ "step": 166
1038
+ },
1039
+ {
1040
+ "epoch": 0.26,
1041
+ "learning_rate": 0.00015078369905956114,
1042
+ "loss": 1.2866,
1043
+ "step": 167
1044
+ },
1045
+ {
1046
+ "epoch": 0.26,
1047
+ "learning_rate": 0.00015047021943573669,
1048
+ "loss": 1.1168,
1049
+ "step": 168
1050
+ },
1051
+ {
1052
+ "epoch": 0.26,
1053
+ "learning_rate": 0.00015015673981191223,
1054
+ "loss": 1.3957,
1055
+ "step": 169
1056
+ },
1057
+ {
1058
+ "epoch": 0.26,
1059
+ "learning_rate": 0.0001498432601880878,
1060
+ "loss": 1.4531,
1061
+ "step": 170
1062
+ },
1063
+ {
1064
+ "epoch": 0.26,
1065
+ "learning_rate": 0.00014952978056426332,
1066
+ "loss": 1.3238,
1067
+ "step": 171
1068
+ },
1069
+ {
1070
+ "epoch": 0.27,
1071
+ "learning_rate": 0.00014921630094043889,
1072
+ "loss": 1.2166,
1073
+ "step": 172
1074
+ },
1075
+ {
1076
+ "epoch": 0.27,
1077
+ "learning_rate": 0.00014890282131661443,
1078
+ "loss": 1.5402,
1079
+ "step": 173
1080
+ },
1081
+ {
1082
+ "epoch": 0.27,
1083
+ "learning_rate": 0.00014858934169278997,
1084
+ "loss": 1.6967,
1085
+ "step": 174
1086
+ },
1087
+ {
1088
+ "epoch": 0.27,
1089
+ "learning_rate": 0.00014827586206896554,
1090
+ "loss": 1.6176,
1091
+ "step": 175
1092
+ },
1093
+ {
1094
+ "epoch": 0.27,
1095
+ "learning_rate": 0.00014796238244514106,
1096
+ "loss": 1.3383,
1097
+ "step": 176
1098
+ },
1099
+ {
1100
+ "epoch": 0.27,
1101
+ "learning_rate": 0.00014764890282131663,
1102
+ "loss": 1.4409,
1103
+ "step": 177
1104
+ },
1105
+ {
1106
+ "epoch": 0.27,
1107
+ "learning_rate": 0.00014733542319749217,
1108
+ "loss": 1.2145,
1109
+ "step": 178
1110
+ },
1111
+ {
1112
+ "epoch": 0.28,
1113
+ "learning_rate": 0.00014702194357366771,
1114
+ "loss": 1.7027,
1115
+ "step": 179
1116
+ },
1117
+ {
1118
+ "epoch": 0.28,
1119
+ "learning_rate": 0.00014670846394984328,
1120
+ "loss": 1.5586,
1121
+ "step": 180
1122
+ },
1123
+ {
1124
+ "epoch": 0.28,
1125
+ "learning_rate": 0.0001463949843260188,
1126
+ "loss": 1.3585,
1127
+ "step": 181
1128
+ },
1129
+ {
1130
+ "epoch": 0.28,
1131
+ "learning_rate": 0.00014608150470219437,
1132
+ "loss": 1.4356,
1133
+ "step": 182
1134
+ },
1135
+ {
1136
+ "epoch": 0.28,
1137
+ "learning_rate": 0.0001457680250783699,
1138
+ "loss": 1.202,
1139
+ "step": 183
1140
+ },
1141
+ {
1142
+ "epoch": 0.28,
1143
+ "learning_rate": 0.00014545454545454546,
1144
+ "loss": 1.4999,
1145
+ "step": 184
1146
+ },
1147
+ {
1148
+ "epoch": 0.29,
1149
+ "learning_rate": 0.000145141065830721,
1150
+ "loss": 1.8095,
1151
+ "step": 185
1152
+ },
1153
+ {
1154
+ "epoch": 0.29,
1155
+ "learning_rate": 0.00014482758620689657,
1156
+ "loss": 1.1945,
1157
+ "step": 186
1158
+ },
1159
+ {
1160
+ "epoch": 0.29,
1161
+ "learning_rate": 0.0001445141065830721,
1162
+ "loss": 1.2339,
1163
+ "step": 187
1164
+ },
1165
+ {
1166
+ "epoch": 0.29,
1167
+ "learning_rate": 0.00014420062695924766,
1168
+ "loss": 1.8472,
1169
+ "step": 188
1170
+ },
1171
+ {
1172
+ "epoch": 0.29,
1173
+ "learning_rate": 0.0001438871473354232,
1174
+ "loss": 0.9892,
1175
+ "step": 189
1176
+ },
1177
+ {
1178
+ "epoch": 0.29,
1179
+ "learning_rate": 0.00014357366771159874,
1180
+ "loss": 1.1517,
1181
+ "step": 190
1182
+ },
1183
+ {
1184
+ "epoch": 0.29,
1185
+ "learning_rate": 0.0001432601880877743,
1186
+ "loss": 1.4252,
1187
+ "step": 191
1188
+ },
1189
+ {
1190
+ "epoch": 0.3,
1191
+ "learning_rate": 0.00014294670846394983,
1192
+ "loss": 1.5793,
1193
+ "step": 192
1194
+ },
1195
+ {
1196
+ "epoch": 0.3,
1197
+ "learning_rate": 0.0001426332288401254,
1198
+ "loss": 1.6862,
1199
+ "step": 193
1200
+ },
1201
+ {
1202
+ "epoch": 0.3,
1203
+ "learning_rate": 0.00014231974921630097,
1204
+ "loss": 1.2111,
1205
+ "step": 194
1206
+ },
1207
+ {
1208
+ "epoch": 0.3,
1209
+ "learning_rate": 0.00014200626959247648,
1210
+ "loss": 1.5163,
1211
+ "step": 195
1212
+ },
1213
+ {
1214
+ "epoch": 0.3,
1215
+ "learning_rate": 0.00014169278996865206,
1216
+ "loss": 1.4963,
1217
+ "step": 196
1218
+ },
1219
+ {
1220
+ "epoch": 0.3,
1221
+ "learning_rate": 0.0001413793103448276,
1222
+ "loss": 1.906,
1223
+ "step": 197
1224
+ },
1225
+ {
1226
+ "epoch": 0.31,
1227
+ "learning_rate": 0.00014106583072100314,
1228
+ "loss": 1.4359,
1229
+ "step": 198
1230
+ },
1231
+ {
1232
+ "epoch": 0.31,
1233
+ "learning_rate": 0.00014075235109717868,
1234
+ "loss": 1.4324,
1235
+ "step": 199
1236
+ },
1237
+ {
1238
+ "epoch": 0.31,
1239
+ "learning_rate": 0.00014043887147335423,
1240
+ "loss": 1.513,
1241
+ "step": 200
1242
+ },
1243
+ {
1244
+ "epoch": 0.31,
1245
+ "eval_loss": 1.3920646905899048,
1246
+ "eval_runtime": 866.473,
1247
+ "eval_samples_per_second": 1.16,
1248
+ "eval_steps_per_second": 1.16,
1249
+ "step": 200
1250
+ },
1251
+ {
1252
+ "epoch": 0.31,
1253
+ "learning_rate": 0.0001401253918495298,
1254
+ "loss": 1.2709,
1255
+ "step": 201
1256
+ },
1257
+ {
1258
+ "epoch": 0.31,
1259
+ "learning_rate": 0.00013981191222570534,
1260
+ "loss": 1.4844,
1261
+ "step": 202
1262
+ },
1263
+ {
1264
+ "epoch": 0.31,
1265
+ "learning_rate": 0.00013949843260188088,
1266
+ "loss": 1.4832,
1267
+ "step": 203
1268
+ },
1269
+ {
1270
+ "epoch": 0.31,
1271
+ "learning_rate": 0.00013918495297805643,
1272
+ "loss": 1.6388,
1273
+ "step": 204
1274
+ },
1275
+ {
1276
+ "epoch": 0.32,
1277
+ "learning_rate": 0.000138871473354232,
1278
+ "loss": 0.7068,
1279
+ "step": 205
1280
+ },
1281
+ {
1282
+ "epoch": 0.32,
1283
+ "learning_rate": 0.0001385579937304075,
1284
+ "loss": 1.4712,
1285
+ "step": 206
1286
+ },
1287
+ {
1288
+ "epoch": 0.32,
1289
+ "learning_rate": 0.00013824451410658308,
1290
+ "loss": 1.4861,
1291
+ "step": 207
1292
+ },
1293
+ {
1294
+ "epoch": 0.32,
1295
+ "learning_rate": 0.00013793103448275863,
1296
+ "loss": 1.0516,
1297
+ "step": 208
1298
+ },
1299
+ {
1300
+ "epoch": 0.32,
1301
+ "learning_rate": 0.00013761755485893417,
1302
+ "loss": 1.7038,
1303
+ "step": 209
1304
+ },
1305
+ {
1306
+ "epoch": 0.32,
1307
+ "learning_rate": 0.00013730407523510974,
1308
+ "loss": 1.5841,
1309
+ "step": 210
1310
+ },
1311
+ {
1312
+ "epoch": 0.33,
1313
+ "learning_rate": 0.00013699059561128526,
1314
+ "loss": 1.7073,
1315
+ "step": 211
1316
+ },
1317
+ {
1318
+ "epoch": 0.33,
1319
+ "learning_rate": 0.00013667711598746083,
1320
+ "loss": 1.1921,
1321
+ "step": 212
1322
+ },
1323
+ {
1324
+ "epoch": 0.33,
1325
+ "learning_rate": 0.00013636363636363637,
1326
+ "loss": 1.4323,
1327
+ "step": 213
1328
+ },
1329
+ {
1330
+ "epoch": 0.33,
1331
+ "learning_rate": 0.0001360501567398119,
1332
+ "loss": 1.6943,
1333
+ "step": 214
1334
+ },
1335
+ {
1336
+ "epoch": 0.33,
1337
+ "learning_rate": 0.00013573667711598748,
1338
+ "loss": 1.1724,
1339
+ "step": 215
1340
+ },
1341
+ {
1342
+ "epoch": 0.33,
1343
+ "learning_rate": 0.00013542319749216303,
1344
+ "loss": 1.6194,
1345
+ "step": 216
1346
+ },
1347
+ {
1348
+ "epoch": 0.33,
1349
+ "learning_rate": 0.00013510971786833857,
1350
+ "loss": 1.1307,
1351
+ "step": 217
1352
+ },
1353
+ {
1354
+ "epoch": 0.34,
1355
+ "learning_rate": 0.0001347962382445141,
1356
+ "loss": 0.9491,
1357
+ "step": 218
1358
+ },
1359
+ {
1360
+ "epoch": 0.34,
1361
+ "learning_rate": 0.00013448275862068965,
1362
+ "loss": 1.4941,
1363
+ "step": 219
1364
+ },
1365
+ {
1366
+ "epoch": 0.34,
1367
+ "learning_rate": 0.0001341692789968652,
1368
+ "loss": 1.519,
1369
+ "step": 220
1370
+ },
1371
+ {
1372
+ "epoch": 0.34,
1373
+ "learning_rate": 0.00013385579937304077,
1374
+ "loss": 1.2309,
1375
+ "step": 221
1376
+ },
1377
+ {
1378
+ "epoch": 0.34,
1379
+ "learning_rate": 0.0001335423197492163,
1380
+ "loss": 1.7851,
1381
+ "step": 222
1382
+ },
1383
+ {
1384
+ "epoch": 0.34,
1385
+ "learning_rate": 0.00013322884012539185,
1386
+ "loss": 1.2136,
1387
+ "step": 223
1388
+ },
1389
+ {
1390
+ "epoch": 0.35,
1391
+ "learning_rate": 0.0001329153605015674,
1392
+ "loss": 1.4588,
1393
+ "step": 224
1394
+ },
1395
+ {
1396
+ "epoch": 0.35,
1397
+ "learning_rate": 0.00013260188087774294,
1398
+ "loss": 1.1362,
1399
+ "step": 225
1400
+ },
1401
+ {
1402
+ "epoch": 0.35,
1403
+ "learning_rate": 0.0001322884012539185,
1404
+ "loss": 1.3981,
1405
+ "step": 226
1406
+ },
1407
+ {
1408
+ "epoch": 0.35,
1409
+ "learning_rate": 0.00013197492163009403,
1410
+ "loss": 1.417,
1411
+ "step": 227
1412
+ },
1413
+ {
1414
+ "epoch": 0.35,
1415
+ "learning_rate": 0.0001316614420062696,
1416
+ "loss": 1.3526,
1417
+ "step": 228
1418
+ },
1419
+ {
1420
+ "epoch": 0.35,
1421
+ "learning_rate": 0.00013134796238244517,
1422
+ "loss": 1.3844,
1423
+ "step": 229
1424
+ },
1425
+ {
1426
+ "epoch": 0.35,
1427
+ "learning_rate": 0.00013103448275862068,
1428
+ "loss": 1.1524,
1429
+ "step": 230
1430
+ },
1431
+ {
1432
+ "epoch": 0.36,
1433
+ "learning_rate": 0.00013072100313479625,
1434
+ "loss": 1.46,
1435
+ "step": 231
1436
+ },
1437
+ {
1438
+ "epoch": 0.36,
1439
+ "learning_rate": 0.0001304075235109718,
1440
+ "loss": 1.4659,
1441
+ "step": 232
1442
+ },
1443
+ {
1444
+ "epoch": 0.36,
1445
+ "learning_rate": 0.00013009404388714734,
1446
+ "loss": 0.9684,
1447
+ "step": 233
1448
+ },
1449
+ {
1450
+ "epoch": 0.36,
1451
+ "learning_rate": 0.0001297805642633229,
1452
+ "loss": 1.4079,
1453
+ "step": 234
1454
+ },
1455
+ {
1456
+ "epoch": 0.36,
1457
+ "learning_rate": 0.00012946708463949843,
1458
+ "loss": 1.5447,
1459
+ "step": 235
1460
+ },
1461
+ {
1462
+ "epoch": 0.36,
1463
+ "learning_rate": 0.000129153605015674,
1464
+ "loss": 1.4095,
1465
+ "step": 236
1466
+ },
1467
+ {
1468
+ "epoch": 0.37,
1469
+ "learning_rate": 0.00012884012539184954,
1470
+ "loss": 1.4073,
1471
+ "step": 237
1472
+ },
1473
+ {
1474
+ "epoch": 0.37,
1475
+ "learning_rate": 0.00012852664576802508,
1476
+ "loss": 1.2867,
1477
+ "step": 238
1478
+ },
1479
+ {
1480
+ "epoch": 0.37,
1481
+ "learning_rate": 0.00012821316614420062,
1482
+ "loss": 1.7357,
1483
+ "step": 239
1484
+ },
1485
+ {
1486
+ "epoch": 0.37,
1487
+ "learning_rate": 0.0001278996865203762,
1488
+ "loss": 1.4032,
1489
+ "step": 240
1490
+ },
1491
+ {
1492
+ "epoch": 0.37,
1493
+ "eval_loss": 1.386928915977478,
1494
+ "eval_runtime": 866.195,
1495
+ "eval_samples_per_second": 1.16,
1496
+ "eval_steps_per_second": 1.16,
1497
+ "step": 240
1498
+ },
1499
+ {
1500
+ "epoch": 0.37,
1501
+ "learning_rate": 0.00012758620689655174,
1502
+ "loss": 1.4204,
1503
+ "step": 241
1504
+ },
1505
+ {
1506
+ "epoch": 0.37,
1507
+ "learning_rate": 0.00012727272727272728,
1508
+ "loss": 1.1404,
1509
+ "step": 242
1510
+ },
1511
+ {
1512
+ "epoch": 0.37,
1513
+ "learning_rate": 0.00012695924764890282,
1514
+ "loss": 1.7556,
1515
+ "step": 243
1516
+ },
1517
+ {
1518
+ "epoch": 0.38,
1519
+ "learning_rate": 0.00012664576802507837,
1520
+ "loss": 1.1598,
1521
+ "step": 244
1522
+ },
1523
+ {
1524
+ "epoch": 0.38,
1525
+ "learning_rate": 0.00012633228840125394,
1526
+ "loss": 1.6847,
1527
+ "step": 245
1528
+ },
1529
+ {
1530
+ "epoch": 0.38,
1531
+ "learning_rate": 0.00012601880877742945,
1532
+ "loss": 0.9023,
1533
+ "step": 246
1534
+ },
1535
+ {
1536
+ "epoch": 0.38,
1537
+ "learning_rate": 0.00012570532915360502,
1538
+ "loss": 1.7739,
1539
+ "step": 247
1540
+ },
1541
+ {
1542
+ "epoch": 0.38,
1543
+ "learning_rate": 0.0001253918495297806,
1544
+ "loss": 1.2681,
1545
+ "step": 248
1546
+ },
1547
+ {
1548
+ "epoch": 0.38,
1549
+ "learning_rate": 0.0001250783699059561,
1550
+ "loss": 1.5614,
1551
+ "step": 249
1552
+ },
1553
+ {
1554
+ "epoch": 0.39,
1555
+ "learning_rate": 0.00012476489028213168,
1556
+ "loss": 1.7507,
1557
+ "step": 250
1558
+ },
1559
+ {
1560
+ "epoch": 0.39,
1561
+ "learning_rate": 0.00012445141065830722,
1562
+ "loss": 1.205,
1563
+ "step": 251
1564
+ },
1565
+ {
1566
+ "epoch": 0.39,
1567
+ "learning_rate": 0.00012413793103448277,
1568
+ "loss": 1.0752,
1569
+ "step": 252
1570
+ },
1571
+ {
1572
+ "epoch": 0.39,
1573
+ "learning_rate": 0.0001238244514106583,
1574
+ "loss": 1.6259,
1575
+ "step": 253
1576
+ },
1577
+ {
1578
+ "epoch": 0.39,
1579
+ "learning_rate": 0.00012351097178683385,
1580
+ "loss": 1.2839,
1581
+ "step": 254
1582
+ },
1583
+ {
1584
+ "epoch": 0.39,
1585
+ "learning_rate": 0.00012319749216300942,
1586
+ "loss": 1.5367,
1587
+ "step": 255
1588
+ },
1589
+ {
1590
+ "epoch": 0.39,
1591
+ "learning_rate": 0.00012288401253918497,
1592
+ "loss": 1.3161,
1593
+ "step": 256
1594
+ },
1595
+ {
1596
+ "epoch": 0.4,
1597
+ "learning_rate": 0.0001225705329153605,
1598
+ "loss": 1.5973,
1599
+ "step": 257
1600
+ },
1601
+ {
1602
+ "epoch": 0.4,
1603
+ "learning_rate": 0.00012225705329153605,
1604
+ "loss": 1.3614,
1605
+ "step": 258
1606
+ },
1607
+ {
1608
+ "epoch": 0.4,
1609
+ "learning_rate": 0.00012194357366771161,
1610
+ "loss": 0.9446,
1611
+ "step": 259
1612
+ },
1613
+ {
1614
+ "epoch": 0.4,
1615
+ "learning_rate": 0.00012163009404388714,
1616
+ "loss": 1.3996,
1617
+ "step": 260
1618
+ },
1619
+ {
1620
+ "epoch": 0.4,
1621
+ "learning_rate": 0.00012131661442006271,
1622
+ "loss": 1.4435,
1623
+ "step": 261
1624
+ },
1625
+ {
1626
+ "epoch": 0.4,
1627
+ "learning_rate": 0.00012100313479623827,
1628
+ "loss": 1.059,
1629
+ "step": 262
1630
+ },
1631
+ {
1632
+ "epoch": 0.41,
1633
+ "learning_rate": 0.0001206896551724138,
1634
+ "loss": 1.1291,
1635
+ "step": 263
1636
+ },
1637
+ {
1638
+ "epoch": 0.41,
1639
+ "learning_rate": 0.00012037617554858935,
1640
+ "loss": 1.4702,
1641
+ "step": 264
1642
+ },
1643
+ {
1644
+ "epoch": 0.41,
1645
+ "learning_rate": 0.0001200626959247649,
1646
+ "loss": 1.3586,
1647
+ "step": 265
1648
+ },
1649
+ {
1650
+ "epoch": 0.41,
1651
+ "learning_rate": 0.00011974921630094045,
1652
+ "loss": 1.6694,
1653
+ "step": 266
1654
+ },
1655
+ {
1656
+ "epoch": 0.41,
1657
+ "learning_rate": 0.00011943573667711598,
1658
+ "loss": 1.2642,
1659
+ "step": 267
1660
+ },
1661
+ {
1662
+ "epoch": 0.41,
1663
+ "learning_rate": 0.00011912225705329154,
1664
+ "loss": 1.1625,
1665
+ "step": 268
1666
+ },
1667
+ {
1668
+ "epoch": 0.41,
1669
+ "learning_rate": 0.0001188087774294671,
1670
+ "loss": 1.6103,
1671
+ "step": 269
1672
+ },
1673
+ {
1674
+ "epoch": 0.42,
1675
+ "learning_rate": 0.00011849529780564264,
1676
+ "loss": 1.3178,
1677
+ "step": 270
1678
+ },
1679
+ {
1680
+ "epoch": 0.42,
1681
+ "learning_rate": 0.0001181818181818182,
1682
+ "loss": 1.3575,
1683
+ "step": 271
1684
+ },
1685
+ {
1686
+ "epoch": 0.42,
1687
+ "learning_rate": 0.00011786833855799372,
1688
+ "loss": 1.4692,
1689
+ "step": 272
1690
+ },
1691
+ {
1692
+ "epoch": 0.42,
1693
+ "learning_rate": 0.0001175548589341693,
1694
+ "loss": 1.7414,
1695
+ "step": 273
1696
+ },
1697
+ {
1698
+ "epoch": 0.42,
1699
+ "learning_rate": 0.00011724137931034482,
1700
+ "loss": 1.6938,
1701
+ "step": 274
1702
+ },
1703
+ {
1704
+ "epoch": 0.42,
1705
+ "learning_rate": 0.00011692789968652038,
1706
+ "loss": 1.9068,
1707
+ "step": 275
1708
+ },
1709
+ {
1710
+ "epoch": 0.43,
1711
+ "learning_rate": 0.00011661442006269594,
1712
+ "loss": 1.6176,
1713
+ "step": 276
1714
+ },
1715
+ {
1716
+ "epoch": 0.43,
1717
+ "learning_rate": 0.00011630094043887148,
1718
+ "loss": 1.5824,
1719
+ "step": 277
1720
+ },
1721
+ {
1722
+ "epoch": 0.43,
1723
+ "learning_rate": 0.00011598746081504704,
1724
+ "loss": 1.5442,
1725
+ "step": 278
1726
+ },
1727
+ {
1728
+ "epoch": 0.43,
1729
+ "learning_rate": 0.00011567398119122257,
1730
+ "loss": 1.322,
1731
+ "step": 279
1732
+ },
1733
+ {
1734
+ "epoch": 0.43,
1735
+ "learning_rate": 0.00011536050156739812,
1736
+ "loss": 1.6088,
1737
+ "step": 280
1738
+ },
1739
+ {
1740
+ "epoch": 0.43,
1741
+ "eval_loss": 1.3828775882720947,
1742
+ "eval_runtime": 866.9525,
1743
+ "eval_samples_per_second": 1.159,
1744
+ "eval_steps_per_second": 1.159,
1745
+ "step": 280
1746
+ },
1747
+ {
1748
+ "epoch": 0.43,
1749
+ "learning_rate": 0.00011504702194357367,
1750
+ "loss": 1.2647,
1751
+ "step": 281
1752
+ },
1753
+ {
1754
+ "epoch": 0.44,
1755
+ "learning_rate": 0.00011473354231974922,
1756
+ "loss": 1.6157,
1757
+ "step": 282
1758
+ },
1759
+ {
1760
+ "epoch": 0.44,
1761
+ "learning_rate": 0.00011442006269592478,
1762
+ "loss": 1.6007,
1763
+ "step": 283
1764
+ },
1765
+ {
1766
+ "epoch": 0.44,
1767
+ "learning_rate": 0.00011410658307210031,
1768
+ "loss": 1.7898,
1769
+ "step": 284
1770
+ },
1771
+ {
1772
+ "epoch": 0.44,
1773
+ "learning_rate": 0.00011379310344827588,
1774
+ "loss": 1.2325,
1775
+ "step": 285
1776
+ },
1777
+ {
1778
+ "epoch": 0.44,
1779
+ "learning_rate": 0.00011347962382445141,
1780
+ "loss": 1.2579,
1781
+ "step": 286
1782
+ },
1783
+ {
1784
+ "epoch": 0.44,
1785
+ "learning_rate": 0.00011316614420062696,
1786
+ "loss": 1.3584,
1787
+ "step": 287
1788
+ },
1789
+ {
1790
+ "epoch": 0.44,
1791
+ "learning_rate": 0.00011285266457680251,
1792
+ "loss": 1.3461,
1793
+ "step": 288
1794
+ },
1795
+ {
1796
+ "epoch": 0.45,
1797
+ "learning_rate": 0.00011253918495297806,
1798
+ "loss": 1.1491,
1799
+ "step": 289
1800
+ },
1801
+ {
1802
+ "epoch": 0.45,
1803
+ "learning_rate": 0.00011222570532915362,
1804
+ "loss": 1.4842,
1805
+ "step": 290
1806
+ },
1807
+ {
1808
+ "epoch": 0.45,
1809
+ "learning_rate": 0.00011191222570532915,
1810
+ "loss": 1.1456,
1811
+ "step": 291
1812
+ },
1813
+ {
1814
+ "epoch": 0.45,
1815
+ "learning_rate": 0.00011159874608150471,
1816
+ "loss": 1.1362,
1817
+ "step": 292
1818
+ },
1819
+ {
1820
+ "epoch": 0.45,
1821
+ "learning_rate": 0.00011128526645768025,
1822
+ "loss": 1.591,
1823
+ "step": 293
1824
+ },
1825
+ {
1826
+ "epoch": 0.45,
1827
+ "learning_rate": 0.0001109717868338558,
1828
+ "loss": 1.5453,
1829
+ "step": 294
1830
+ },
1831
+ {
1832
+ "epoch": 0.46,
1833
+ "learning_rate": 0.00011065830721003134,
1834
+ "loss": 1.6698,
1835
+ "step": 295
1836
+ },
1837
+ {
1838
+ "epoch": 0.46,
1839
+ "learning_rate": 0.0001103448275862069,
1840
+ "loss": 1.9426,
1841
+ "step": 296
1842
+ },
1843
+ {
1844
+ "epoch": 0.46,
1845
+ "learning_rate": 0.00011003134796238246,
1846
+ "loss": 1.4073,
1847
+ "step": 297
1848
+ },
1849
+ {
1850
+ "epoch": 0.46,
1851
+ "learning_rate": 0.00010971786833855799,
1852
+ "loss": 0.9123,
1853
+ "step": 298
1854
+ },
1855
+ {
1856
+ "epoch": 0.46,
1857
+ "learning_rate": 0.00010940438871473355,
1858
+ "loss": 1.6831,
1859
+ "step": 299
1860
+ },
1861
+ {
1862
+ "epoch": 0.46,
1863
+ "learning_rate": 0.00010909090909090909,
1864
+ "loss": 1.294,
1865
+ "step": 300
1866
+ },
1867
+ {
1868
+ "epoch": 0.46,
1869
+ "learning_rate": 0.00010877742946708465,
1870
+ "loss": 1.5178,
1871
+ "step": 301
1872
+ },
1873
+ {
1874
+ "epoch": 0.47,
1875
+ "learning_rate": 0.0001084639498432602,
1876
+ "loss": 1.2052,
1877
+ "step": 302
1878
+ },
1879
+ {
1880
+ "epoch": 0.47,
1881
+ "learning_rate": 0.00010815047021943574,
1882
+ "loss": 1.1377,
1883
+ "step": 303
1884
+ },
1885
+ {
1886
+ "epoch": 0.47,
1887
+ "learning_rate": 0.00010783699059561129,
1888
+ "loss": 1.6875,
1889
+ "step": 304
1890
+ },
1891
+ {
1892
+ "epoch": 0.47,
1893
+ "learning_rate": 0.00010752351097178684,
1894
+ "loss": 1.1238,
1895
+ "step": 305
1896
+ },
1897
+ {
1898
+ "epoch": 0.47,
1899
+ "learning_rate": 0.00010721003134796239,
1900
+ "loss": 1.0325,
1901
+ "step": 306
1902
+ },
1903
+ {
1904
+ "epoch": 0.47,
1905
+ "learning_rate": 0.00010689655172413792,
1906
+ "loss": 0.9661,
1907
+ "step": 307
1908
+ },
1909
+ {
1910
+ "epoch": 0.48,
1911
+ "learning_rate": 0.00010658307210031349,
1912
+ "loss": 1.1979,
1913
+ "step": 308
1914
+ },
1915
+ {
1916
+ "epoch": 0.48,
1917
+ "learning_rate": 0.00010626959247648905,
1918
+ "loss": 1.2015,
1919
+ "step": 309
1920
+ },
1921
+ {
1922
+ "epoch": 0.48,
1923
+ "learning_rate": 0.00010595611285266458,
1924
+ "loss": 1.6322,
1925
+ "step": 310
1926
+ },
1927
+ {
1928
+ "epoch": 0.48,
1929
+ "learning_rate": 0.00010564263322884013,
1930
+ "loss": 1.3118,
1931
+ "step": 311
1932
+ },
1933
+ {
1934
+ "epoch": 0.48,
1935
+ "learning_rate": 0.00010532915360501568,
1936
+ "loss": 1.5565,
1937
+ "step": 312
1938
+ },
1939
+ {
1940
+ "epoch": 0.48,
1941
+ "learning_rate": 0.00010501567398119123,
1942
+ "loss": 0.8889,
1943
+ "step": 313
1944
+ },
1945
+ {
1946
+ "epoch": 0.48,
1947
+ "learning_rate": 0.00010470219435736676,
1948
+ "loss": 0.983,
1949
+ "step": 314
1950
+ },
1951
+ {
1952
+ "epoch": 0.49,
1953
+ "learning_rate": 0.00010438871473354232,
1954
+ "loss": 1.3105,
1955
+ "step": 315
1956
+ },
1957
+ {
1958
+ "epoch": 0.49,
1959
+ "learning_rate": 0.00010407523510971788,
1960
+ "loss": 1.2417,
1961
+ "step": 316
1962
+ },
1963
+ {
1964
+ "epoch": 0.49,
1965
+ "learning_rate": 0.00010376175548589342,
1966
+ "loss": 1.1782,
1967
+ "step": 317
1968
+ },
1969
+ {
1970
+ "epoch": 0.49,
1971
+ "learning_rate": 0.00010344827586206898,
1972
+ "loss": 1.5382,
1973
+ "step": 318
1974
+ },
1975
+ {
1976
+ "epoch": 0.49,
1977
+ "learning_rate": 0.00010313479623824452,
1978
+ "loss": 1.3938,
1979
+ "step": 319
1980
+ },
1981
+ {
1982
+ "epoch": 0.49,
1983
+ "learning_rate": 0.00010282131661442008,
1984
+ "loss": 0.9485,
1985
+ "step": 320
1986
+ },
1987
+ {
1988
+ "epoch": 0.49,
1989
+ "eval_loss": 1.3797812461853027,
1990
+ "eval_runtime": 866.3779,
1991
+ "eval_samples_per_second": 1.16,
1992
+ "eval_steps_per_second": 1.16,
1993
+ "step": 320
1994
+ },
1995
+ {
1996
+ "epoch": 0.5,
1997
+ "learning_rate": 0.0001025078369905956,
1998
+ "loss": 1.5318,
1999
+ "step": 321
2000
+ },
2001
+ {
2002
+ "epoch": 0.5,
2003
+ "learning_rate": 0.00010219435736677116,
2004
+ "loss": 1.5941,
2005
+ "step": 322
2006
+ },
2007
+ {
2008
+ "epoch": 0.5,
2009
+ "learning_rate": 0.00010188087774294672,
2010
+ "loss": 1.5669,
2011
+ "step": 323
2012
+ },
2013
+ {
2014
+ "epoch": 0.5,
2015
+ "learning_rate": 0.00010156739811912226,
2016
+ "loss": 1.409,
2017
+ "step": 324
2018
+ },
2019
+ {
2020
+ "epoch": 0.5,
2021
+ "learning_rate": 0.00010125391849529782,
2022
+ "loss": 1.5028,
2023
+ "step": 325
2024
+ },
2025
+ {
2026
+ "epoch": 0.5,
2027
+ "learning_rate": 0.00010094043887147335,
2028
+ "loss": 1.2918,
2029
+ "step": 326
2030
+ },
2031
+ {
2032
+ "epoch": 0.5,
2033
+ "learning_rate": 0.0001006269592476489,
2034
+ "loss": 1.5101,
2035
+ "step": 327
2036
+ },
2037
+ {
2038
+ "epoch": 0.51,
2039
+ "learning_rate": 0.00010031347962382445,
2040
+ "loss": 1.2542,
2041
+ "step": 328
2042
+ },
2043
+ {
2044
+ "epoch": 0.51,
2045
+ "learning_rate": 0.0001,
2046
+ "loss": 1.3369,
2047
+ "step": 329
2048
+ },
2049
+ {
2050
+ "epoch": 0.51,
2051
+ "learning_rate": 9.968652037617555e-05,
2052
+ "loss": 1.3911,
2053
+ "step": 330
2054
+ },
2055
+ {
2056
+ "epoch": 0.51,
2057
+ "learning_rate": 9.93730407523511e-05,
2058
+ "loss": 1.3189,
2059
+ "step": 331
2060
+ },
2061
+ {
2062
+ "epoch": 0.51,
2063
+ "learning_rate": 9.905956112852665e-05,
2064
+ "loss": 1.1879,
2065
+ "step": 332
2066
+ },
2067
+ {
2068
+ "epoch": 0.51,
2069
+ "learning_rate": 9.87460815047022e-05,
2070
+ "loss": 1.4755,
2071
+ "step": 333
2072
+ },
2073
+ {
2074
+ "epoch": 0.52,
2075
+ "learning_rate": 9.843260188087775e-05,
2076
+ "loss": 0.8884,
2077
+ "step": 334
2078
+ },
2079
+ {
2080
+ "epoch": 0.52,
2081
+ "learning_rate": 9.81191222570533e-05,
2082
+ "loss": 1.4322,
2083
+ "step": 335
2084
+ },
2085
+ {
2086
+ "epoch": 0.52,
2087
+ "learning_rate": 9.780564263322885e-05,
2088
+ "loss": 1.2872,
2089
+ "step": 336
2090
+ },
2091
+ {
2092
+ "epoch": 0.52,
2093
+ "learning_rate": 9.749216300940439e-05,
2094
+ "loss": 1.717,
2095
+ "step": 337
2096
+ },
2097
+ {
2098
+ "epoch": 0.52,
2099
+ "learning_rate": 9.717868338557993e-05,
2100
+ "loss": 1.4597,
2101
+ "step": 338
2102
+ },
2103
+ {
2104
+ "epoch": 0.52,
2105
+ "learning_rate": 9.686520376175549e-05,
2106
+ "loss": 1.3438,
2107
+ "step": 339
2108
+ },
2109
+ {
2110
+ "epoch": 0.52,
2111
+ "learning_rate": 9.655172413793105e-05,
2112
+ "loss": 1.0354,
2113
+ "step": 340
2114
+ },
2115
+ {
2116
+ "epoch": 0.53,
2117
+ "learning_rate": 9.623824451410659e-05,
2118
+ "loss": 1.8091,
2119
+ "step": 341
2120
+ },
2121
+ {
2122
+ "epoch": 0.53,
2123
+ "learning_rate": 9.592476489028213e-05,
2124
+ "loss": 1.4617,
2125
+ "step": 342
2126
+ },
2127
+ {
2128
+ "epoch": 0.53,
2129
+ "learning_rate": 9.561128526645769e-05,
2130
+ "loss": 1.4417,
2131
+ "step": 343
2132
+ },
2133
+ {
2134
+ "epoch": 0.53,
2135
+ "learning_rate": 9.529780564263323e-05,
2136
+ "loss": 1.0994,
2137
+ "step": 344
2138
+ },
2139
+ {
2140
+ "epoch": 0.53,
2141
+ "learning_rate": 9.498432601880878e-05,
2142
+ "loss": 1.1481,
2143
+ "step": 345
2144
+ },
2145
+ {
2146
+ "epoch": 0.53,
2147
+ "learning_rate": 9.467084639498433e-05,
2148
+ "loss": 1.0104,
2149
+ "step": 346
2150
+ },
2151
+ {
2152
+ "epoch": 0.54,
2153
+ "learning_rate": 9.435736677115989e-05,
2154
+ "loss": 1.0098,
2155
+ "step": 347
2156
+ },
2157
+ {
2158
+ "epoch": 0.54,
2159
+ "learning_rate": 9.404388714733543e-05,
2160
+ "loss": 1.9093,
2161
+ "step": 348
2162
+ },
2163
+ {
2164
+ "epoch": 0.54,
2165
+ "learning_rate": 9.373040752351098e-05,
2166
+ "loss": 0.9269,
2167
+ "step": 349
2168
+ },
2169
+ {
2170
+ "epoch": 0.54,
2171
+ "learning_rate": 9.341692789968652e-05,
2172
+ "loss": 0.606,
2173
+ "step": 350
2174
+ },
2175
+ {
2176
+ "epoch": 0.54,
2177
+ "learning_rate": 9.310344827586207e-05,
2178
+ "loss": 1.5762,
2179
+ "step": 351
2180
+ },
2181
+ {
2182
+ "epoch": 0.54,
2183
+ "learning_rate": 9.278996865203762e-05,
2184
+ "loss": 1.1424,
2185
+ "step": 352
2186
+ },
2187
+ {
2188
+ "epoch": 0.54,
2189
+ "learning_rate": 9.247648902821317e-05,
2190
+ "loss": 1.6305,
2191
+ "step": 353
2192
+ },
2193
+ {
2194
+ "epoch": 0.55,
2195
+ "learning_rate": 9.216300940438872e-05,
2196
+ "loss": 1.1738,
2197
+ "step": 354
2198
+ },
2199
+ {
2200
+ "epoch": 0.55,
2201
+ "learning_rate": 9.184952978056427e-05,
2202
+ "loss": 0.973,
2203
+ "step": 355
2204
+ },
2205
+ {
2206
+ "epoch": 0.55,
2207
+ "learning_rate": 9.153605015673982e-05,
2208
+ "loss": 1.4229,
2209
+ "step": 356
2210
+ },
2211
+ {
2212
+ "epoch": 0.55,
2213
+ "learning_rate": 9.122257053291536e-05,
2214
+ "loss": 1.3226,
2215
+ "step": 357
2216
+ },
2217
+ {
2218
+ "epoch": 0.55,
2219
+ "learning_rate": 9.090909090909092e-05,
2220
+ "loss": 1.6308,
2221
+ "step": 358
2222
+ },
2223
+ {
2224
+ "epoch": 0.55,
2225
+ "learning_rate": 9.059561128526646e-05,
2226
+ "loss": 1.5685,
2227
+ "step": 359
2228
+ },
2229
+ {
2230
+ "epoch": 0.56,
2231
+ "learning_rate": 9.028213166144202e-05,
2232
+ "loss": 1.5146,
2233
+ "step": 360
2234
+ },
2235
+ {
2236
+ "epoch": 0.56,
2237
+ "eval_loss": 1.3761860132217407,
2238
+ "eval_runtime": 866.1927,
2239
+ "eval_samples_per_second": 1.16,
2240
+ "eval_steps_per_second": 1.16,
2241
+ "step": 360
2242
+ },
2243
+ {
2244
+ "epoch": 0.56,
2245
+ "learning_rate": 8.996865203761756e-05,
2246
+ "loss": 1.333,
2247
+ "step": 361
2248
+ },
2249
+ {
2250
+ "epoch": 0.56,
2251
+ "learning_rate": 8.96551724137931e-05,
2252
+ "loss": 1.4217,
2253
+ "step": 362
2254
+ },
2255
+ {
2256
+ "epoch": 0.56,
2257
+ "learning_rate": 8.934169278996866e-05,
2258
+ "loss": 1.2831,
2259
+ "step": 363
2260
+ },
2261
+ {
2262
+ "epoch": 0.56,
2263
+ "learning_rate": 8.90282131661442e-05,
2264
+ "loss": 1.4965,
2265
+ "step": 364
2266
+ },
2267
+ {
2268
+ "epoch": 0.56,
2269
+ "learning_rate": 8.871473354231975e-05,
2270
+ "loss": 1.5408,
2271
+ "step": 365
2272
+ },
2273
+ {
2274
+ "epoch": 0.56,
2275
+ "learning_rate": 8.84012539184953e-05,
2276
+ "loss": 1.3491,
2277
+ "step": 366
2278
+ },
2279
+ {
2280
+ "epoch": 0.57,
2281
+ "learning_rate": 8.808777429467086e-05,
2282
+ "loss": 1.2511,
2283
+ "step": 367
2284
+ },
2285
+ {
2286
+ "epoch": 0.57,
2287
+ "learning_rate": 8.77742946708464e-05,
2288
+ "loss": 1.7709,
2289
+ "step": 368
2290
+ },
2291
+ {
2292
+ "epoch": 0.57,
2293
+ "learning_rate": 8.746081504702195e-05,
2294
+ "loss": 1.4589,
2295
+ "step": 369
2296
+ },
2297
+ {
2298
+ "epoch": 0.57,
2299
+ "learning_rate": 8.71473354231975e-05,
2300
+ "loss": 1.2527,
2301
+ "step": 370
2302
+ },
2303
+ {
2304
+ "epoch": 0.57,
2305
+ "learning_rate": 8.683385579937305e-05,
2306
+ "loss": 1.483,
2307
+ "step": 371
2308
+ },
2309
+ {
2310
+ "epoch": 0.57,
2311
+ "learning_rate": 8.652037617554859e-05,
2312
+ "loss": 1.0561,
2313
+ "step": 372
2314
+ },
2315
+ {
2316
+ "epoch": 0.58,
2317
+ "learning_rate": 8.620689655172413e-05,
2318
+ "loss": 1.52,
2319
+ "step": 373
2320
+ },
2321
+ {
2322
+ "epoch": 0.58,
2323
+ "learning_rate": 8.58934169278997e-05,
2324
+ "loss": 1.6113,
2325
+ "step": 374
2326
+ },
2327
+ {
2328
+ "epoch": 0.58,
2329
+ "learning_rate": 8.557993730407524e-05,
2330
+ "loss": 1.6251,
2331
+ "step": 375
2332
+ },
2333
+ {
2334
+ "epoch": 0.58,
2335
+ "learning_rate": 8.526645768025079e-05,
2336
+ "loss": 1.1801,
2337
+ "step": 376
2338
+ },
2339
+ {
2340
+ "epoch": 0.58,
2341
+ "learning_rate": 8.495297805642633e-05,
2342
+ "loss": 1.2712,
2343
+ "step": 377
2344
+ },
2345
+ {
2346
+ "epoch": 0.58,
2347
+ "learning_rate": 8.463949843260189e-05,
2348
+ "loss": 1.3207,
2349
+ "step": 378
2350
+ },
2351
+ {
2352
+ "epoch": 0.58,
2353
+ "learning_rate": 8.432601880877743e-05,
2354
+ "loss": 1.7274,
2355
+ "step": 379
2356
+ },
2357
+ {
2358
+ "epoch": 0.59,
2359
+ "learning_rate": 8.401253918495299e-05,
2360
+ "loss": 0.8838,
2361
+ "step": 380
2362
+ },
2363
+ {
2364
+ "epoch": 0.59,
2365
+ "learning_rate": 8.369905956112853e-05,
2366
+ "loss": 1.5105,
2367
+ "step": 381
2368
+ },
2369
+ {
2370
+ "epoch": 0.59,
2371
+ "learning_rate": 8.338557993730409e-05,
2372
+ "loss": 1.4059,
2373
+ "step": 382
2374
+ },
2375
+ {
2376
+ "epoch": 0.59,
2377
+ "learning_rate": 8.307210031347963e-05,
2378
+ "loss": 1.4178,
2379
+ "step": 383
2380
+ },
2381
+ {
2382
+ "epoch": 0.59,
2383
+ "learning_rate": 8.275862068965517e-05,
2384
+ "loss": 1.513,
2385
+ "step": 384
2386
+ },
2387
+ {
2388
+ "epoch": 0.59,
2389
+ "learning_rate": 8.244514106583072e-05,
2390
+ "loss": 0.773,
2391
+ "step": 385
2392
+ },
2393
+ {
2394
+ "epoch": 0.6,
2395
+ "learning_rate": 8.213166144200627e-05,
2396
+ "loss": 1.5264,
2397
+ "step": 386
2398
+ },
2399
+ {
2400
+ "epoch": 0.6,
2401
+ "learning_rate": 8.181818181818183e-05,
2402
+ "loss": 1.2271,
2403
+ "step": 387
2404
+ },
2405
+ {
2406
+ "epoch": 0.6,
2407
+ "learning_rate": 8.150470219435737e-05,
2408
+ "loss": 1.8335,
2409
+ "step": 388
2410
+ },
2411
+ {
2412
+ "epoch": 0.6,
2413
+ "learning_rate": 8.119122257053292e-05,
2414
+ "loss": 1.333,
2415
+ "step": 389
2416
+ },
2417
+ {
2418
+ "epoch": 0.6,
2419
+ "learning_rate": 8.087774294670847e-05,
2420
+ "loss": 1.0521,
2421
+ "step": 390
2422
+ },
2423
+ {
2424
+ "epoch": 0.6,
2425
+ "learning_rate": 8.056426332288402e-05,
2426
+ "loss": 1.6083,
2427
+ "step": 391
2428
+ },
2429
+ {
2430
+ "epoch": 0.6,
2431
+ "learning_rate": 8.025078369905956e-05,
2432
+ "loss": 1.3099,
2433
+ "step": 392
2434
+ },
2435
+ {
2436
+ "epoch": 0.61,
2437
+ "learning_rate": 7.993730407523512e-05,
2438
+ "loss": 1.3217,
2439
+ "step": 393
2440
+ },
2441
+ {
2442
+ "epoch": 0.61,
2443
+ "learning_rate": 7.962382445141067e-05,
2444
+ "loss": 1.5504,
2445
+ "step": 394
2446
+ },
2447
+ {
2448
+ "epoch": 0.61,
2449
+ "learning_rate": 7.931034482758621e-05,
2450
+ "loss": 1.2699,
2451
+ "step": 395
2452
+ },
2453
+ {
2454
+ "epoch": 0.61,
2455
+ "learning_rate": 7.899686520376176e-05,
2456
+ "loss": 0.8664,
2457
+ "step": 396
2458
+ },
2459
+ {
2460
+ "epoch": 0.61,
2461
+ "learning_rate": 7.86833855799373e-05,
2462
+ "loss": 1.6929,
2463
+ "step": 397
2464
+ },
2465
+ {
2466
+ "epoch": 0.61,
2467
+ "learning_rate": 7.836990595611286e-05,
2468
+ "loss": 1.2003,
2469
+ "step": 398
2470
+ },
2471
+ {
2472
+ "epoch": 0.62,
2473
+ "learning_rate": 7.80564263322884e-05,
2474
+ "loss": 1.6811,
2475
+ "step": 399
2476
+ },
2477
+ {
2478
+ "epoch": 0.62,
2479
+ "learning_rate": 7.774294670846394e-05,
2480
+ "loss": 1.6352,
2481
+ "step": 400
2482
+ },
2483
+ {
2484
+ "epoch": 0.62,
2485
+ "eval_loss": 1.3731473684310913,
2486
+ "eval_runtime": 866.2054,
2487
+ "eval_samples_per_second": 1.16,
2488
+ "eval_steps_per_second": 1.16,
2489
+ "step": 400
2490
+ }
2491
+ ],
2492
+ "logging_steps": 1,
2493
+ "max_steps": 648,
2494
+ "num_train_epochs": 1,
2495
+ "save_steps": 40,
2496
+ "total_flos": 1.9141431690264576e+16,
2497
+ "trial_name": null,
2498
+ "trial_params": null
2499
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53b8440b8d8e7bf2870506a7bf59a8cd8408e545cedbc53d234193e070ae3e4e
3
+ size 4536