File size: 17,485 Bytes
22e6485 ed14162 758b1b3 ed14162 22e6485 ed14162 e8e7a23 ed14162 1506f97 4f05039 7d4cc8b 8933b81 c4334b4 46fbfc8 1506f97 46fbfc8 1506f97 ed14162 98b008f ed14162 98b008f ed14162 98b008f ed14162 831b863 ed14162 831b863 ed14162 831b863 ed14162 831b863 ed14162 831b863 ed14162 831b863 ed14162 831b863 ed14162 e8e7a23 ed14162 831b863 ed14162 831b863 ed14162 e8e7a23 ed14162 831b863 ed14162 831b863 6856747 1a091a0 46fbfc8 7d4cc8b 831b863 ed14162 e8e7a23 ed14162 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
---
license: openrail++
library_name: diffusers
inference: false
tags:
- lora
- text-to-image
- stable-diffusion
---
# Hyper-SD
Official Repository of the paper: *[Hyper-SD](https://arxiv.org/abs/2404.13686)*.
Project Page: https://hyper-sd.github.io/
![](./hypersd_tearser.jpg)
## Newsπ₯π₯π₯
* Apr.30, 2024. π₯π₯π₯ Our **8-Steps CFG-Preserved** [Hyper-SDXL-8steps-CFG-LoRA](https://huggingface.co/ByteDance/Hyper-SD/blob/main/Hyper-SDXL-8steps-CFG-lora.safetensors) and [Hyper-SD15-8steps-CFG-LoRA](https://huggingface.co/ByteDance/Hyper-SD/blob/main/Hyper-SD15-8steps-CFG-lora.safetensors) is available now(support 5~8 guidance scales), we strongly recommend making the 8-step CFGLora a standard configuration for all SDXL and SD15 models!!! (the 4-steps version will be coming soon)π₯π₯π₯
* Apr.28, 2024. ComfyUI workflows on 1-Step Unified LoRA π₯° with TCDScheduler to inference on different steps are [released](https://huggingface.co/ByteDance/Hyper-SD/tree/main/comfyui)! Remember to install βοΈ [ComfyUI-TCD](https://github.com/JettHu/ComfyUI-TCD) in your `ComfyUI/custom_nodes` folder!!! You're encouraged to adjust the eta parameter to get better results π!
* Apr.26, 2024. π₯π₯π₯ Our CFG-Preserved Hyper-SD15/SDXL that facilitate negative prompts and larger guidance scales (e.g. 5~8) will be coming soon!!! π₯π₯π₯
* Apr.26, 2024. Thanks to @[Pete](https://huggingface.co/pngwn) for contributing to our [scribble demo](https://huggingface.co/spaces/ByteDance/Hyper-SD15-Scribble) with larger canvas right now π.
* Apr.24, 2024. The ComfyUI [workflow](https://huggingface.co/ByteDance/Hyper-SD/blob/main/comfyui/Hyper-SDXL-1step-Unet-workflow.json) and [checkpoint](https://huggingface.co/ByteDance/Hyper-SD/blob/main/Hyper-SDXL-1step-Unet-Comfyui.fp16.safetensors) on 1-Step SDXL UNet β¨ is also available! Don't forget βοΈ to install the custom [scheduler](https://huggingface.co/ByteDance/Hyper-SD/tree/main/comfyui/ComfyUI-HyperSDXL1StepUnetScheduler) in your `ComfyUI/custom_nodes` folder!!!
* Apr.23, 2024. ComfyUI workflows on N-Steps LoRAs are [released](https://huggingface.co/ByteDance/Hyper-SD/tree/main/comfyui)! Worth a try for creators π₯!
* Apr.23, 2024. Our technical report π is uploaded to [arXiv](https://arxiv.org/abs/2404.13686)! Many implementation details are provided and we welcome more discussionsπ.
* Apr.21, 2024. Hyper-SD β‘οΈ is highly compatible and work well with different base models and controlnets. To clarify, we also append the usage example of controlnet [here](https://huggingface.co/ByteDance/Hyper-SD#controlnet-usage).
* Apr.20, 2024. Our checkpoints and two demos π€ (i.e. [SD15-Scribble](https://huggingface.co/spaces/ByteDance/Hyper-SD15-Scribble) and [SDXL-T2I](https://huggingface.co/spaces/ByteDance/Hyper-SDXL-1Step-T2I)) are publicly available on [HuggingFace Repo](https://huggingface.co/ByteDance/Hyper-SD).
## Try our Hugging Face demos:
Hyper-SD Scribble demo host on [π€ scribble](https://huggingface.co/spaces/ByteDance/Hyper-SD15-Scribble)
Hyper-SDXL One-step Text-to-Image demo host on [π€ T2I](https://huggingface.co/spaces/ByteDance/Hyper-SDXL-1Step-T2I)
## Introduction
Hyper-SD is one of the new State-of-the-Art diffusion model acceleration techniques.
In this repository, we release the models distilled from [SDXL Base 1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) and [Stable-Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)γ
## Checkpoints
* `Hyper-SDXL-Nstep-lora.safetensors`: Lora checkpoint, for SDXL-related models.
* `Hyper-SD15-Nstep-lora.safetensors`: Lora checkpoint, for SD1.5-related models.
* `Hyper-SDXL-1step-unet.safetensors`: Unet checkpoint distilled from SDXL-Base.
## Text-to-Image Usage
### SDXL-related models
#### 2-Steps, 4-Steps, 8-steps LoRA
Take the 2-steps LoRA as an example, you can also use other LoRAs for the corresponding inference steps setting.
```python
import torch
from diffusers import DiffusionPipeline, DDIMScheduler
from huggingface_hub import hf_hub_download
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
repo_name = "ByteDance/Hyper-SD"
# Take 2-steps lora as an example
ckpt_name = "Hyper-SDXL-2steps-lora.safetensors"
# Load model.
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to("cuda")
pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
pipe.fuse_lora()
# Ensure ddim scheduler timestep spacing set as trailing !!!
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
# lower eta results in more detail
prompt="a photo of a cat"
image=pipe(prompt=prompt, num_inference_steps=2, guidance_scale=0).images[0]
```
#### Unified LoRA (support 1 to 8 steps inference)
You can flexibly adjust the number of inference steps and eta value to achieve best performance.
```python
import torch
from diffusers import DiffusionPipeline, TCDScheduler
from huggingface_hub import hf_hub_download
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
repo_name = "ByteDance/Hyper-SD"
ckpt_name = "Hyper-SDXL-1step-lora.safetensors"
# Load model.
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to("cuda")
pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
pipe.fuse_lora()
# Use TCD scheduler to achieve better image quality
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# Lower eta results in more detail for multi-steps inference
eta=1.0
prompt="a photo of a cat"
image=pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0, eta=eta).images[0]
```
#### 1-step SDXL Unet
Only for the single step inference.
```python
import torch
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
repo_name = "ByteDance/Hyper-SD"
ckpt_name = "Hyper-SDXL-1step-Unet.safetensors"
# Load model.
unet = UNet2DConditionModel.from_config(base_model_id, subfolder="unet").to("cuda", torch.float16)
unet.load_state_dict(load_file(hf_hub_download(repo_name, ckpt_name), device="cuda"))
pipe = DiffusionPipeline.from_pretrained(base_model_id, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
# Use LCM scheduler instead of ddim scheduler to support specific timestep number inputs
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
# Set start timesteps to 800 in the one-step inference to get better results
prompt="a photo of a cat"
image=pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0, timesteps=[800]).images[0]
```
### SD1.5-related models
#### 2-Steps, 4-Steps, 8-steps LoRA
Take the 2-steps LoRA as an example, you can also use other LoRAs for the corresponding inference steps setting.
```python
import torch
from diffusers import DiffusionPipeline, DDIMScheduler
from huggingface_hub import hf_hub_download
base_model_id = "runwayml/stable-diffusion-v1-5"
repo_name = "ByteDance/Hyper-SD"
# Take 2-steps lora as an example
ckpt_name = "Hyper-SD15-2steps-lora.safetensors"
# Load model.
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to("cuda")
pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
pipe.fuse_lora()
# Ensure ddim scheduler timestep spacing set as trailing !!!
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
prompt="a photo of a cat"
image=pipe(prompt=prompt, num_inference_steps=2, guidance_scale=0).images[0]
```
#### Unified LoRA (support 1 to 8 steps inference)
You can flexibly adjust the number of inference steps and eta value to achieve best performance.
```python
import torch
from diffusers import DiffusionPipeline, TCDScheduler
from huggingface_hub import hf_hub_download
base_model_id = "runwayml/stable-diffusion-v1-5"
repo_name = "ByteDance/Hyper-SD"
ckpt_name = "Hyper-SD15-1step-lora.safetensors"
# Load model.
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to("cuda")
pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
pipe.fuse_lora()
# Use TCD scheduler to achieve better image quality
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# Lower eta results in more detail for multi-steps inference
eta=1.0
prompt="a photo of a cat"
image=pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0, eta=eta).images[0]
```
## ControlNet Usage
### SDXL-related models
#### 2-Steps, 4-Steps, 8-steps LoRA
Take Canny Controlnet and 2-steps inference as an example:
```python
import torch
from diffusers.utils import load_image
import numpy as np
import cv2
from PIL import Image
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, DDIMScheduler
from huggingface_hub import hf_hub_download
# Load original image
image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png")
image = np.array(image)
# Prepare Canny Control Image
low_threshold = 100
high_threshold = 200
image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
control_image = Image.fromarray(image)
control_image.save("control.png")
control_weight = 0.5 # recommended for good generalization
# Initialize pipeline
controlnet = ControlNetModel.from_pretrained(
"diffusers/controlnet-canny-sdxl-1.0",
torch_dtype=torch.float16
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16).to("cuda")
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-SDXL-2steps-lora.safetensors"))
# Ensure ddim scheduler timestep spacing set as trailing !!!
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
pipe.fuse_lora()
image = pipe("A chocolate cookie", num_inference_steps=2, image=control_image, guidance_scale=0, controlnet_conditioning_scale=control_weight).images[0]
image.save('image_out.png')
```
#### Unified LoRA (support 1 to 8 steps inference)
Take Canny Controlnet as an example:
```python
import torch
from diffusers.utils import load_image
import numpy as np
import cv2
from PIL import Image
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, TCDScheduler
from huggingface_hub import hf_hub_download
# Load original image
image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png")
image = np.array(image)
# Prepare Canny Control Image
low_threshold = 100
high_threshold = 200
image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
control_image = Image.fromarray(image)
control_image.save("control.png")
control_weight = 0.5 # recommended for good generalization
# Initialize pipeline
controlnet = ControlNetModel.from_pretrained(
"diffusers/controlnet-canny-sdxl-1.0",
torch_dtype=torch.float16
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
controlnet=controlnet, vae=vae, torch_dtype=torch.float16).to("cuda")
# Load Hyper-SD15-1step lora
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-SDXL-1step-lora.safetensors"))
pipe.fuse_lora()
# Use TCD scheduler to achieve better image quality
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# Lower eta results in more detail for multi-steps inference
eta=1.0
image = pipe("A chocolate cookie", num_inference_steps=4, image=control_image, guidance_scale=0, controlnet_conditioning_scale=control_weight, eta=eta).images[0]
image.save('image_out.png')
```
### SD1.5-related models
#### 2-Steps, 4-Steps, 8-steps LoRA
Take Canny Controlnet and 2-steps inference as an example:
```python
import torch
from diffusers.utils import load_image
import numpy as np
import cv2
from PIL import Image
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline, DDIMScheduler
from huggingface_hub import hf_hub_download
controlnet_checkpoint = "lllyasviel/control_v11p_sd15_canny"
# Load original image
image = load_image("https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/input.png")
image = np.array(image)
# Prepare Canny Control Image
low_threshold = 100
high_threshold = 200
image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
control_image = Image.fromarray(image)
control_image.save("control.png")
# Initialize pipeline
controlnet = ControlNetModel.from_pretrained(controlnet_checkpoint, torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16).to("cuda")
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-SD15-2steps-lora.safetensors"))
pipe.fuse_lora()
# Ensure ddim scheduler timestep spacing set as trailing !!!
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
image = pipe("a blue paradise bird in the jungle", num_inference_steps=2, image=control_image, guidance_scale=0).images[0]
image.save('image_out.png')
```
#### Unified LoRA (support 1 to 8 steps inference)
Take Canny Controlnet as an example:
```python
import torch
from diffusers.utils import load_image
import numpy as np
import cv2
from PIL import Image
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline, TCDScheduler
from huggingface_hub import hf_hub_download
controlnet_checkpoint = "lllyasviel/control_v11p_sd15_canny"
# Load original image
image = load_image("https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/input.png")
image = np.array(image)
# Prepare Canny Control Image
low_threshold = 100
high_threshold = 200
image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
control_image = Image.fromarray(image)
control_image.save("control.png")
# Initialize pipeline
controlnet = ControlNetModel.from_pretrained(controlnet_checkpoint, torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16).to("cuda")
# Load Hyper-SD15-1step lora
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-SD15-1step-lora.safetensors"))
pipe.fuse_lora()
# Use TCD scheduler to achieve better image quality
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# Lower eta results in more detail for multi-steps inference
eta=1.0
image = pipe("a blue paradise bird in the jungle", num_inference_steps=1, image=control_image, guidance_scale=0, eta=eta).images[0]
image.save('image_out.png')
```
## Comfyui Usage
* `Hyper-SDXL-Nsteps-lora.safetensors`: [text-to-image workflow](https://huggingface.co/ByteDance/Hyper-SD/blob/main/comfyui/Hyper-SDXL-Nsteps-lora-workflow.json)
* `Hyper-SD15-Nsteps-lora.safetensors`: [text-to-image workflow](https://huggingface.co/ByteDance/Hyper-SD/blob/main/comfyui/Hyper-SD15-Nsteps-lora-workflow.json)
* `Hyper-SDXL-1step-Unet-Comfyui.fp16.safetensors`: [text-to-image workflow](https://huggingface.co/ByteDance/Hyper-SD/blob/main/comfyui/Hyper-SDXL-1step-Unet-workflow.json)
* **REQUIREMENT / INSTALL** for 1-Step SDXL UNet: Please install our [scheduler folder](https://huggingface.co/ByteDance/Hyper-SD/tree/main/comfyui/ComfyUI-HyperSDXL1StepUnetScheduler) into your `ComfyUI/custom_nodes` to enable sampling from 800 timestep instead of 999.
* i.e. making sure the `ComfyUI/custom_nodes/ComfyUI-HyperSDXL1StepUnetScheduler` folder exist.
* For more details, please refer to our [technical report](https://arxiv.org/abs/2404.13686).
* `Hyper-SD15-1step-lora.safetensors`: [text-to-image workflow](https://huggingface.co/ByteDance/Hyper-SD/blob/main/comfyui/Hyper-SD15-1step-unified-lora-workflow.json)
* `Hyper-SDXL-1step-lora.safetensors`: [text-to-image workflow](https://huggingface.co/ByteDance/Hyper-SD/blob/main/comfyui/Hyper-SDXL-1step-unified-lora-workflow.json)
* **REQUIREMENT / INSTALL** for 1-Step Unified LoRAs: Please install the [ComfyUI-TCD](https://github.com/JettHu/ComfyUI-TCD) into your `ComfyUI/custom_nodes` to enable TCDScheduler with support of different inference steps (1~8) using single checkpoint.
* i.e. making sure the `ComfyUI/custom_nodes/ComfyUI-TCD` folder exist.
* You're encouraged to adjust the eta parameter in TCDScheduler to get better results.
## Citation
```bibtex
@misc{ren2024hypersd,
title={Hyper-SD: Trajectory Segmented Consistency Model for Efficient Image Synthesis},
author={Yuxi Ren and Xin Xia and Yanzuo Lu and Jiacheng Zhang and Jie Wu and Pan Xie and Xing Wang and Xuefeng Xiao},
year={2024},
eprint={2404.13686},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
``` |