File size: 6,653 Bytes
8d5ebb6 08f9888 3e65770 7d4610c 8d5ebb6 df6d2ec 8d5ebb6 c6c10e8 8d5ebb6 d933bd7 8d5ebb6 2597ef9 bd63dbf 2597ef9 3bf58f3 645b056 3bf58f3 8d5ebb6 d2ebdfc 8d5ebb6 8a94aee 8d5ebb6 aa15e49 8a94aee 8d5ebb6 d2ebdfc 8a94aee d2ebdfc 8d5ebb6 7374c77 8d5ebb6 aa15e49 8a94aee 8d5ebb6 b468d42 8d5ebb6 1dcaccf 8d5ebb6 d2ebdfc 8d5ebb6 8a94aee 8d5ebb6 aa15e49 8a94aee 8d5ebb6 d2ebdfc 8a94aee d2ebdfc 8d5ebb6 3bf58f3 8d5ebb6 df6d2ec 8d5ebb6 df6d2ec 8d5ebb6 7374c77 df6d2ec 8d5ebb6 df6d2ec 8d5ebb6 d724fe0 8d5ebb6 b468d42 df6d2ec 0a5991b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
---
license: openrail++
tags:
- text-to-image
- stable-diffusion
library_name: diffusers
inference: false
pipeline_tag: text-to-image
---
# SDXL-Lightning
![Intro Image](sdxl_lightning_samples.jpg)
SDXL-Lightning is a lightning-fast text-to-image generation model. It can generate high-quality 1024px images in a few steps. For more information, please refer to our research paper: [SDXL-Lightning: Progressive Adversarial Diffusion Distillation](https://arxiv.org/abs/2402.13929). We open-source the model as part of the research.
Our models are distilled from [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0). This repository contains checkpoints for 1-step, 2-step, 4-step, and 8-step distilled models. The generation quality of our 2-step, 4-step, and 8-step model is amazing. Our 1-step model is more experimental.
We provide both full UNet and LoRA checkpoints. The full UNet models have the best quality while the LoRA models can be applied to other base models.
## Demos
* Generate with all configurations, best quality: [Demo](https://huggingface.co/spaces/ByteDance/SDXL-Lightning)
* Real-time generation as you type, lightning-fast: [Demo from fastsdxl.ai](https://fastsdxl.ai/)
## Checkpoints
* `sdxl_lightning_Nstep.safetensors`: All-in-one checkpoint, for ComfyUI.
* `sdxl_lightning_Nstep_unet.safetensors`: UNet checkpoint only, for Diffusers.
* `sdxl_lightning_Nstep_lora.safetensors`: LoRA checkpoint, for Diffusers and ComfyUI.
## Diffusers Usage
Please always use the correct checkpoint for the corresponding inference steps.
### 2-Step, 4-Step, 8-Step UNet
```python
import torch
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_4step_unet.safetensors" # Use the correct ckpt for your step setting!
# Load model.
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
# Ensure sampler uses "trailing" timesteps.
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
# Ensure using the same inference steps as the loaded model and CFG set to 0.
pipe("A girl smiling", num_inference_steps=4, guidance_scale=0).images[0].save("output.png")
```
### 2-Step, 4-Step, 8-Step LoRA
Use LoRA only if you are using non-SDXL base models. Otherwise use our UNet checkpoint for better quality.
```python
import torch
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
from huggingface_hub import hf_hub_download
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_4step_lora.safetensors" # Use the correct ckpt for your step setting!
# Load model.
pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
pipe.load_lora_weights(hf_hub_download(repo, ckpt))
pipe.fuse_lora()
# Ensure sampler uses "trailing" timesteps.
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
# Ensure using the same inference steps as the loaded model and CFG set to 0.
pipe("A girl smiling", num_inference_steps=4, guidance_scale=0).images[0].save("output.png")
```
### 1-Step UNet
The 1-step model is only experimental and the quality is much less stable. Consider using the 2-step model for much better quality.
The 1-step model uses "sample" prediction instead of "epsilon" prediction! The scheduler needs to be configured correctly.
```python
import torch
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_1step_unet_x0.safetensors" # Use the correct ckpt for your step setting!
# Load model.
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
# Ensure sampler uses "trailing" timesteps and "sample" prediction type.
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
# Ensure using the same inference steps as the loaded model and CFG set to 0.
pipe("A girl smiling", num_inference_steps=1, guidance_scale=0).images[0].save("output.png")
```
## ComfyUI Usage
Please always use the correct checkpoint for the corresponding inference steps.
Please use Euler sampler with sgm_uniform scheduler.
### 2-Step, 4-Step, 8-Step Full
1. Download the full checkpoint (`sdxl_lightning_Nstep.safetensors`) to `/ComfyUI/models/checkpoints`.
1. Download our [ComfyUI full workflow](comfyui/sdxl_lightning_workflow_full.json).
![SDXL-Lightning ComfyUI Full Workflow](comfyui/sdxl_lightning_workflow_full.jpg)
### 2-Step, 4-Step, 8-Step LoRA
Use LoRA only if you are using non-SDXL base models. Otherwise use our full checkpoint for better quality.
1. Prepare your own base model.
1. Download the LoRA checkpoint (`sdxl_lightning_Nstep_lora.safetensors`) to `/ComfyUI/models/loras`
1. Download our [ComfyUI LoRA workflow](comfyui/sdxl_lightning_workflow_lora.json).
![SDXL-Lightning ComfyUI LoRA Workflow](comfyui/sdxl_lightning_workflow_lora.jpg)
### 1-Step
The 1-step model is only experimental and the quality is much less stable. Consider using the 2-step model for much better quality.
1. Update your ComfyUI to the latest version.
1. Download the full checkpoint (`sdxl_lightning_1step_x0.safetensors`) to `/ComfyUI/models/checkpoints`.
1. Download our [ComfyUI full 1-step workflow](comfyui/sdxl_lightning_workflow_full_1step.json).
![SDXL-Lightning ComfyUI Full 1-Step Workflow](comfyui/sdxl_lightning_workflow_full_1step.jpg)
## Cite Our Work
```
@misc{lin2024sdxllightning,
title={SDXL-Lightning: Progressive Adversarial Diffusion Distillation},
author={Shanchuan Lin and Anran Wang and Xiao Yang},
year={2024},
eprint={2402.13929},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
``` |