File size: 5,248 Bytes
968e1f1
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c772a
968e1f1
d2c772a
968e1f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd56e5e
968e1f1
 
 
fd56e5e
 
968e1f1
 
6827db8
d2c772a
968e1f1
 
 
 
 
 
d2c772a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
968e1f1
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
base_model: ai-forever/rugpt3medium_based_on_gpt2
tags:
- generated_from_trainer
model-index:
- name: my_rugpt3medium_finetune
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_rugpt3medium_finetune

This model is a fine-tuned version of [ai-forever/rugpt3medium_based_on_gpt2](https://huggingface.co/ai-forever/rugpt3medium_based_on_gpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9955

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 35
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.5373        | 0.46  | 25   | 3.4828          |
| 3.5265        | 0.93  | 50   | 3.4708          |
| 3.478         | 1.39  | 75   | 3.4398          |
| 3.4851        | 1.85  | 100  | 3.3995          |
| 3.4407        | 2.31  | 125  | 3.3609          |
| 3.3731        | 2.78  | 150  | 3.3241          |
| 3.3584        | 3.24  | 175  | 3.2886          |
| 3.3267        | 3.7   | 200  | 3.2540          |
| 3.3043        | 4.17  | 225  | 3.2200          |
| 3.229         | 4.63  | 250  | 3.1853          |
| 3.2618        | 5.09  | 275  | 3.1508          |
| 3.1823        | 5.56  | 300  | 3.1164          |
| 3.172         | 6.02  | 325  | 3.0779          |
| 3.1354        | 6.48  | 350  | 3.0395          |
| 3.0899        | 6.94  | 375  | 2.9987          |
| 3.0741        | 7.41  | 400  | 2.9577          |
| 3.009         | 7.87  | 425  | 2.9140          |
| 2.9598        | 8.33  | 450  | 2.8737          |
| 2.9187        | 8.8   | 475  | 2.8294          |
| 2.9378        | 9.26  | 500  | 2.7842          |
| 2.8396        | 9.72  | 525  | 2.7374          |
| 2.8608        | 10.19 | 550  | 2.6889          |
| 2.7296        | 10.65 | 575  | 2.6405          |
| 2.7452        | 11.11 | 600  | 2.5926          |
| 2.6882        | 11.57 | 625  | 2.5389          |
| 2.6463        | 12.04 | 650  | 2.4893          |
| 2.572         | 12.5  | 675  | 2.4356          |
| 2.5384        | 12.96 | 700  | 2.3788          |
| 2.5246        | 13.43 | 725  | 2.3296          |
| 2.4055        | 13.89 | 750  | 2.2747          |
| 2.3759        | 14.35 | 775  | 2.2155          |
| 2.3351        | 14.81 | 800  | 2.1606          |
| 2.286         | 15.28 | 825  | 2.1061          |
| 2.2694        | 15.74 | 850  | 2.0504          |
| 2.1745        | 16.2  | 875  | 1.9967          |
| 2.1053        | 16.67 | 900  | 1.9411          |
| 2.1184        | 17.13 | 925  | 1.8878          |
| 2.0107        | 17.59 | 950  | 1.8362          |
| 2.027         | 18.06 | 975  | 1.7854          |
| 1.9153        | 18.52 | 1000 | 1.7304          |
| 1.9267        | 18.98 | 1025 | 1.6854          |
| 1.8131        | 19.44 | 1050 | 1.6331          |
| 1.8405        | 19.91 | 1075 | 1.5839          |
| 1.7294        | 20.37 | 1100 | 1.5370          |
| 1.7154        | 20.83 | 1125 | 1.4971          |
| 1.6573        | 21.3  | 1150 | 1.4476          |
| 1.6391        | 21.76 | 1175 | 1.4130          |
| 1.5497        | 22.22 | 1200 | 1.3727          |
| 1.5194        | 22.69 | 1225 | 1.3378          |
| 1.535         | 23.15 | 1250 | 1.3000          |
| 1.4514        | 23.61 | 1275 | 1.2714          |
| 1.4711        | 24.07 | 1300 | 1.2388          |
| 1.4105        | 24.54 | 1325 | 1.2136          |
| 1.4202        | 25.0  | 1350 | 1.1890          |
| 1.3351        | 25.46 | 1375 | 1.1679          |
| 1.3575        | 25.93 | 1400 | 1.1440          |
| 1.2882        | 26.39 | 1425 | 1.1202          |
| 1.3378        | 26.85 | 1450 | 1.1074          |
| 1.3094        | 27.31 | 1475 | 1.0864          |
| 1.2793        | 27.78 | 1500 | 1.0743          |
| 1.2377        | 28.24 | 1525 | 1.0626          |
| 1.2693        | 28.7  | 1550 | 1.0468          |
| 1.2157        | 29.17 | 1575 | 1.0368          |
| 1.2007        | 29.63 | 1600 | 1.0263          |
| 1.2376        | 30.09 | 1625 | 1.0221          |
| 1.2216        | 30.56 | 1650 | 1.0136          |
| 1.1923        | 31.02 | 1675 | 1.0102          |
| 1.2143        | 31.48 | 1700 | 1.0039          |
| 1.1764        | 31.94 | 1725 | 1.0014          |
| 1.1654        | 32.41 | 1750 | 0.9990          |
| 1.2031        | 32.87 | 1775 | 0.9976          |
| 1.1952        | 33.33 | 1800 | 0.9965          |
| 1.1852        | 33.8  | 1825 | 0.9961          |
| 1.1737        | 34.26 | 1850 | 0.9959          |
| 1.1609        | 34.72 | 1875 | 0.9955          |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0