CESI-LINEACT-Laboratory2023's picture
Upload output.log
a819edd verified
/usr/local/lib/python3.10/dist-packages/lightning_fabric/connector.py:558: `precision=16` is supported for historical reasons but its usage is discouraged. Please set your precision to 16-mixed instead!
INFO:pytorch_lightning.utilities.rank_zero:Using 16bit Automatic Mixed Precision (AMP)
INFO:pytorch_lightning.utilities.rank_zero:GPU available: True (cuda), used: True
INFO:pytorch_lightning.utilities.rank_zero:TPU available: False, using: 0 TPU cores
INFO:pytorch_lightning.utilities.rank_zero:IPU available: False, using: 0 IPUs
INFO:pytorch_lightning.utilities.rank_zero:HPU available: False, using: 0 HPUs
/usr/local/lib/python3.10/dist-packages/pytorch_lightning/loggers/wandb.py:389: There is a wandb run already in progress and newly created instances of `WandbLogger` will reuse this run. If this is not desired, call `wandb.finish()` before instantiating `WandbLogger`.
INFO:pytorch_lightning.accelerators.cuda:LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
INFO:pytorch_lightning.callbacks.model_summary:
| Name | Type | Params
-----------------------------------------------------------------
0 | train_acc | MulticlassAccuracy | 0
1 | valid_acc | MulticlassAccuracy | 0
2 | test_acc | MulticlassAccuracy | 0
3 | val_f1_score | MulticlassF1Score | 0
4 | train_f1_score | MulticlassF1Score | 0
5 | test_f1_score | MulticlassF1Score | 0
6 | confusion_matrix | MulticlassConfusionMatrix | 0
7 | gcn | SGCN | 36.5 K
8 | encoder | MoE_TransformerGraphEncoder | 6.8 M
9 | out | Sequential | 18.6 K
-----------------------------------------------------------------
6.9 M Trainable params
0 Non-trainable params
6.9 M Total params
27.527 Total estimated model params size (MB)
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved. New best score: 0.263
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.135 >= min_delta = 1e-08. New best score: 0.398
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.008 >= min_delta = 1e-08. New best score: 0.406
Epoch 00006: reducing learning rate of group 0 to 5.0000e-04.
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.471 >= min_delta = 1e-08. New best score: 0.877
Epoch 00010: reducing learning rate of group 0 to 2.5000e-04.
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.016 >= min_delta = 1e-08. New best score: 0.893
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.016 >= min_delta = 1e-08. New best score: 0.909
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.006 >= min_delta = 1e-08. New best score: 0.915
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.006 >= min_delta = 1e-08. New best score: 0.920
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.002 >= min_delta = 1e-08. New best score: 0.923
Epoch 00017: reducing learning rate of group 0 to 1.2500e-04.
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.002 >= min_delta = 1e-08. New best score: 0.925
Epoch 00020: reducing learning rate of group 0 to 6.2500e-05.
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.002 >= min_delta = 1e-08. New best score: 0.927
Epoch 00023: reducing learning rate of group 0 to 3.1250e-05.
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.003 >= min_delta = 1e-08. New best score: 0.930
Epoch 00026: reducing learning rate of group 0 to 1.5625e-05.
INFO:pytorch_lightning.callbacks.early_stopping:Metric val_accuracy improved by 0.003 >= min_delta = 1e-08. New best score: 0.933
Epoch 00029: reducing learning rate of group 0 to 7.8125e-06.
Epoch 00032: reducing learning rate of group 0 to 5.0000e-06.
INFO:pytorch_lightning.callbacks.early_stopping:Monitored metric val_accuracy did not improve in the last 50 records. Best score: 0.933. Signaling Trainer to stop.
model_args ModelArgs : ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8)
model_args =: ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8)
model_args ModelArgs : ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8)
model_args =: ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8)
model_args ModelArgs : ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8)
model_args =: ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8)
model_args ModelArgs : ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8)
model_args =: ModelArgs(dim=128, hidden_dim=512, norm_eps=1e-05, moe=MoeArgs(num_experts=8, num_experts_per_tok=2), max_batch_size=32, max_seq_len=8)
INFO:pytorch_lightning.accelerators.cuda:LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
0 -> ('', MoE_GCN(
(train_acc): MulticlassAccuracy()
(valid_acc): MulticlassAccuracy()
(test_acc): MulticlassAccuracy()
(val_f1_score): MulticlassF1Score()
(train_f1_score): MulticlassF1Score()
(test_f1_score): MulticlassF1Score()
(confusion_matrix): MulticlassConfusionMatrix()
(gcn): SGCN(
(conv_layers): ModuleList(
(0): unit_gcn(
(conv_list): ModuleList(
(0-2): 3 x Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1))
)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
)
(1): unit_gcn(
(conv_list): ModuleList(
(0-2): 3 x Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1))
)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
)
(2): unit_gcn(
(conv_list): ModuleList(
(0-2): 3 x Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1))
)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
)
)
)
(encoder): MoE_TransformerGraphEncoder(
(layers): ModuleList(
(0-3): 4 x MoE_TransformerGraphEncoderLayer(
(attention): Residual(
(sublayer): MultiHeadAttention(
(heads): ModuleList(
(0-7): 8 x AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
)
)
(linear): Linear(in_features=256, out_features=128, bias=True)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(feed_forward): Residual(
(sublayer): MoeLayer(
(experts): ModuleList(
(0-7): 8 x FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
)
)
(gate): Linear(in_features=128, out_features=8, bias=False)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
)
(positional_encoder): PositionalEncoder(
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
)
(out): Sequential(
(0): Linear(in_features=128, out_features=128, bias=True)
(1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(2): Linear(in_features=128, out_features=14, bias=True)
)
))
1 -> ('train_acc', MulticlassAccuracy())
2 -> ('valid_acc', MulticlassAccuracy())
3 -> ('test_acc', MulticlassAccuracy())
4 -> ('val_f1_score', MulticlassF1Score())
5 -> ('train_f1_score', MulticlassF1Score())
6 -> ('test_f1_score', MulticlassF1Score())
7 -> ('confusion_matrix', MulticlassConfusionMatrix())
8 -> ('gcn', SGCN(
(conv_layers): ModuleList(
(0): unit_gcn(
(conv_list): ModuleList(
(0-2): 3 x Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1))
)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
)
(1): unit_gcn(
(conv_list): ModuleList(
(0-2): 3 x Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1))
)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
)
(2): unit_gcn(
(conv_list): ModuleList(
(0-2): 3 x Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1))
)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
)
)
))
9 -> ('gcn.conv_layers', ModuleList(
(0): unit_gcn(
(conv_list): ModuleList(
(0-2): 3 x Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1))
)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
)
(1): unit_gcn(
(conv_list): ModuleList(
(0-2): 3 x Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1))
)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
)
(2): unit_gcn(
(conv_list): ModuleList(
(0-2): 3 x Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1))
)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
)
))
10 -> ('gcn.conv_layers.0', unit_gcn(
(conv_list): ModuleList(
(0-2): 3 x Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1))
)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
))
11 -> ('gcn.conv_layers.0.conv_list', ModuleList(
(0-2): 3 x Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1))
))
12 -> ('gcn.conv_layers.0.conv_list.0', Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1)))
13 -> ('gcn.conv_layers.0.conv_list.1', Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1)))
14 -> ('gcn.conv_layers.0.conv_list.2', Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1)))
15 -> ('gcn.conv_layers.0.bn', BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))
16 -> ('gcn.conv_layers.0.act', Mish())
17 -> ('gcn.conv_layers.1', unit_gcn(
(conv_list): ModuleList(
(0-2): 3 x Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1))
)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
))
18 -> ('gcn.conv_layers.1.conv_list', ModuleList(
(0-2): 3 x Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1))
))
19 -> ('gcn.conv_layers.1.conv_list.0', Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1)))
20 -> ('gcn.conv_layers.1.conv_list.1', Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1)))
21 -> ('gcn.conv_layers.1.conv_list.2', Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1)))
22 -> ('gcn.conv_layers.1.bn', BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))
23 -> ('gcn.conv_layers.1.act', Mish())
24 -> ('gcn.conv_layers.2', unit_gcn(
(conv_list): ModuleList(
(0-2): 3 x Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1))
)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
))
25 -> ('gcn.conv_layers.2.conv_list', ModuleList(
(0-2): 3 x Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1))
))
26 -> ('gcn.conv_layers.2.conv_list.0', Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1)))
27 -> ('gcn.conv_layers.2.conv_list.1', Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1)))
28 -> ('gcn.conv_layers.2.conv_list.2', Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1)))
29 -> ('gcn.conv_layers.2.bn', BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))
30 -> ('gcn.conv_layers.2.act', Mish())
31 -> ('encoder', MoE_TransformerGraphEncoder(
(layers): ModuleList(
(0-3): 4 x MoE_TransformerGraphEncoderLayer(
(attention): Residual(
(sublayer): MultiHeadAttention(
(heads): ModuleList(
(0-7): 8 x AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
)
)
(linear): Linear(in_features=256, out_features=128, bias=True)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(feed_forward): Residual(
(sublayer): MoeLayer(
(experts): ModuleList(
(0-7): 8 x FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
)
)
(gate): Linear(in_features=128, out_features=8, bias=False)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
)
(positional_encoder): PositionalEncoder(
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
))
32 -> ('encoder.layers', ModuleList(
(0-3): 4 x MoE_TransformerGraphEncoderLayer(
(attention): Residual(
(sublayer): MultiHeadAttention(
(heads): ModuleList(
(0-7): 8 x AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
)
)
(linear): Linear(in_features=256, out_features=128, bias=True)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(feed_forward): Residual(
(sublayer): MoeLayer(
(experts): ModuleList(
(0-7): 8 x FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
)
)
(gate): Linear(in_features=128, out_features=8, bias=False)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
))
33 -> ('encoder.layers.0', MoE_TransformerGraphEncoderLayer(
(attention): Residual(
(sublayer): MultiHeadAttention(
(heads): ModuleList(
(0-7): 8 x AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
)
)
(linear): Linear(in_features=256, out_features=128, bias=True)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(feed_forward): Residual(
(sublayer): MoeLayer(
(experts): ModuleList(
(0-7): 8 x FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
)
)
(gate): Linear(in_features=128, out_features=8, bias=False)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
))
34 -> ('encoder.layers.0.attention', Residual(
(sublayer): MultiHeadAttention(
(heads): ModuleList(
(0-7): 8 x AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
)
)
(linear): Linear(in_features=256, out_features=128, bias=True)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
))
35 -> ('encoder.layers.0.attention.sublayer', MultiHeadAttention(
(heads): ModuleList(
(0-7): 8 x AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
)
)
(linear): Linear(in_features=256, out_features=128, bias=True)
))
36 -> ('encoder.layers.0.attention.sublayer.heads', ModuleList(
(0-7): 8 x AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
)
))
37 -> ('encoder.layers.0.attention.sublayer.heads.0', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
38 -> ('encoder.layers.0.attention.sublayer.heads.0.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
39 -> ('encoder.layers.0.attention.sublayer.heads.0.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
40 -> ('encoder.layers.0.attention.sublayer.heads.0.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
41 -> ('encoder.layers.0.attention.sublayer.heads.1', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
42 -> ('encoder.layers.0.attention.sublayer.heads.1.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
43 -> ('encoder.layers.0.attention.sublayer.heads.1.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
44 -> ('encoder.layers.0.attention.sublayer.heads.1.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
45 -> ('encoder.layers.0.attention.sublayer.heads.2', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
46 -> ('encoder.layers.0.attention.sublayer.heads.2.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
47 -> ('encoder.layers.0.attention.sublayer.heads.2.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
48 -> ('encoder.layers.0.attention.sublayer.heads.2.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
49 -> ('encoder.layers.0.attention.sublayer.heads.3', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
50 -> ('encoder.layers.0.attention.sublayer.heads.3.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
51 -> ('encoder.layers.0.attention.sublayer.heads.3.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
52 -> ('encoder.layers.0.attention.sublayer.heads.3.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
53 -> ('encoder.layers.0.attention.sublayer.heads.4', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
54 -> ('encoder.layers.0.attention.sublayer.heads.4.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
55 -> ('encoder.layers.0.attention.sublayer.heads.4.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
56 -> ('encoder.layers.0.attention.sublayer.heads.4.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
57 -> ('encoder.layers.0.attention.sublayer.heads.5', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
58 -> ('encoder.layers.0.attention.sublayer.heads.5.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
59 -> ('encoder.layers.0.attention.sublayer.heads.5.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
60 -> ('encoder.layers.0.attention.sublayer.heads.5.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
61 -> ('encoder.layers.0.attention.sublayer.heads.6', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
62 -> ('encoder.layers.0.attention.sublayer.heads.6.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
63 -> ('encoder.layers.0.attention.sublayer.heads.6.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
64 -> ('encoder.layers.0.attention.sublayer.heads.6.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
65 -> ('encoder.layers.0.attention.sublayer.heads.7', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
66 -> ('encoder.layers.0.attention.sublayer.heads.7.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
67 -> ('encoder.layers.0.attention.sublayer.heads.7.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
68 -> ('encoder.layers.0.attention.sublayer.heads.7.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
69 -> ('encoder.layers.0.attention.sublayer.linear', Linear(in_features=256, out_features=128, bias=True))
70 -> ('encoder.layers.0.attention.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True))
71 -> ('encoder.layers.0.attention.dropout', Dropout(p=0.1, inplace=False))
72 -> ('encoder.layers.0.feed_forward', Residual(
(sublayer): MoeLayer(
(experts): ModuleList(
(0-7): 8 x FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
)
)
(gate): Linear(in_features=128, out_features=8, bias=False)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
))
73 -> ('encoder.layers.0.feed_forward.sublayer', MoeLayer(
(experts): ModuleList(
(0-7): 8 x FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
)
)
(gate): Linear(in_features=128, out_features=8, bias=False)
))
74 -> ('encoder.layers.0.feed_forward.sublayer.experts', ModuleList(
(0-7): 8 x FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
)
))
75 -> ('encoder.layers.0.feed_forward.sublayer.experts.0', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
76 -> ('encoder.layers.0.feed_forward.sublayer.experts.0.w1', Linear(in_features=128, out_features=512, bias=False))
77 -> ('encoder.layers.0.feed_forward.sublayer.experts.0.w2', Linear(in_features=512, out_features=128, bias=False))
78 -> ('encoder.layers.0.feed_forward.sublayer.experts.0.w3', Linear(in_features=128, out_features=512, bias=False))
79 -> ('encoder.layers.0.feed_forward.sublayer.experts.1', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
80 -> ('encoder.layers.0.feed_forward.sublayer.experts.1.w1', Linear(in_features=128, out_features=512, bias=False))
81 -> ('encoder.layers.0.feed_forward.sublayer.experts.1.w2', Linear(in_features=512, out_features=128, bias=False))
82 -> ('encoder.layers.0.feed_forward.sublayer.experts.1.w3', Linear(in_features=128, out_features=512, bias=False))
83 -> ('encoder.layers.0.feed_forward.sublayer.experts.2', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
84 -> ('encoder.layers.0.feed_forward.sublayer.experts.2.w1', Linear(in_features=128, out_features=512, bias=False))
85 -> ('encoder.layers.0.feed_forward.sublayer.experts.2.w2', Linear(in_features=512, out_features=128, bias=False))
86 -> ('encoder.layers.0.feed_forward.sublayer.experts.2.w3', Linear(in_features=128, out_features=512, bias=False))
87 -> ('encoder.layers.0.feed_forward.sublayer.experts.3', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
88 -> ('encoder.layers.0.feed_forward.sublayer.experts.3.w1', Linear(in_features=128, out_features=512, bias=False))
89 -> ('encoder.layers.0.feed_forward.sublayer.experts.3.w2', Linear(in_features=512, out_features=128, bias=False))
90 -> ('encoder.layers.0.feed_forward.sublayer.experts.3.w3', Linear(in_features=128, out_features=512, bias=False))
91 -> ('encoder.layers.0.feed_forward.sublayer.experts.4', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
92 -> ('encoder.layers.0.feed_forward.sublayer.experts.4.w1', Linear(in_features=128, out_features=512, bias=False))
93 -> ('encoder.layers.0.feed_forward.sublayer.experts.4.w2', Linear(in_features=512, out_features=128, bias=False))
94 -> ('encoder.layers.0.feed_forward.sublayer.experts.4.w3', Linear(in_features=128, out_features=512, bias=False))
95 -> ('encoder.layers.0.feed_forward.sublayer.experts.5', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
96 -> ('encoder.layers.0.feed_forward.sublayer.experts.5.w1', Linear(in_features=128, out_features=512, bias=False))
97 -> ('encoder.layers.0.feed_forward.sublayer.experts.5.w2', Linear(in_features=512, out_features=128, bias=False))
98 -> ('encoder.layers.0.feed_forward.sublayer.experts.5.w3', Linear(in_features=128, out_features=512, bias=False))
99 -> ('encoder.layers.0.feed_forward.sublayer.experts.6', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
100 -> ('encoder.layers.0.feed_forward.sublayer.experts.6.w1', Linear(in_features=128, out_features=512, bias=False))
101 -> ('encoder.layers.0.feed_forward.sublayer.experts.6.w2', Linear(in_features=512, out_features=128, bias=False))
102 -> ('encoder.layers.0.feed_forward.sublayer.experts.6.w3', Linear(in_features=128, out_features=512, bias=False))
103 -> ('encoder.layers.0.feed_forward.sublayer.experts.7', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
104 -> ('encoder.layers.0.feed_forward.sublayer.experts.7.w1', Linear(in_features=128, out_features=512, bias=False))
105 -> ('encoder.layers.0.feed_forward.sublayer.experts.7.w2', Linear(in_features=512, out_features=128, bias=False))
106 -> ('encoder.layers.0.feed_forward.sublayer.experts.7.w3', Linear(in_features=128, out_features=512, bias=False))
107 -> ('encoder.layers.0.feed_forward.sublayer.gate', Linear(in_features=128, out_features=8, bias=False))
108 -> ('encoder.layers.0.feed_forward.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True))
109 -> ('encoder.layers.0.feed_forward.dropout', Dropout(p=0.1, inplace=False))
110 -> ('encoder.layers.0.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True))
111 -> ('encoder.layers.1', MoE_TransformerGraphEncoderLayer(
(attention): Residual(
(sublayer): MultiHeadAttention(
(heads): ModuleList(
(0-7): 8 x AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
)
)
(linear): Linear(in_features=256, out_features=128, bias=True)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(feed_forward): Residual(
(sublayer): MoeLayer(
(experts): ModuleList(
(0-7): 8 x FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
)
)
(gate): Linear(in_features=128, out_features=8, bias=False)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
))
112 -> ('encoder.layers.1.attention', Residual(
(sublayer): MultiHeadAttention(
(heads): ModuleList(
(0-7): 8 x AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
)
)
(linear): Linear(in_features=256, out_features=128, bias=True)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
))
113 -> ('encoder.layers.1.attention.sublayer', MultiHeadAttention(
(heads): ModuleList(
(0-7): 8 x AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
)
)
(linear): Linear(in_features=256, out_features=128, bias=True)
))
114 -> ('encoder.layers.1.attention.sublayer.heads', ModuleList(
(0-7): 8 x AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
)
))
115 -> ('encoder.layers.1.attention.sublayer.heads.0', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
116 -> ('encoder.layers.1.attention.sublayer.heads.0.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
117 -> ('encoder.layers.1.attention.sublayer.heads.0.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
118 -> ('encoder.layers.1.attention.sublayer.heads.0.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
119 -> ('encoder.layers.1.attention.sublayer.heads.1', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
120 -> ('encoder.layers.1.attention.sublayer.heads.1.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
121 -> ('encoder.layers.1.attention.sublayer.heads.1.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
122 -> ('encoder.layers.1.attention.sublayer.heads.1.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
123 -> ('encoder.layers.1.attention.sublayer.heads.2', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
124 -> ('encoder.layers.1.attention.sublayer.heads.2.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
125 -> ('encoder.layers.1.attention.sublayer.heads.2.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
126 -> ('encoder.layers.1.attention.sublayer.heads.2.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
127 -> ('encoder.layers.1.attention.sublayer.heads.3', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
128 -> ('encoder.layers.1.attention.sublayer.heads.3.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
129 -> ('encoder.layers.1.attention.sublayer.heads.3.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
130 -> ('encoder.layers.1.attention.sublayer.heads.3.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
131 -> ('encoder.layers.1.attention.sublayer.heads.4', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
132 -> ('encoder.layers.1.attention.sublayer.heads.4.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
133 -> ('encoder.layers.1.attention.sublayer.heads.4.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
134 -> ('encoder.layers.1.attention.sublayer.heads.4.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
135 -> ('encoder.layers.1.attention.sublayer.heads.5', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
136 -> ('encoder.layers.1.attention.sublayer.heads.5.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
137 -> ('encoder.layers.1.attention.sublayer.heads.5.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
138 -> ('encoder.layers.1.attention.sublayer.heads.5.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
139 -> ('encoder.layers.1.attention.sublayer.heads.6', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
140 -> ('encoder.layers.1.attention.sublayer.heads.6.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
141 -> ('encoder.layers.1.attention.sublayer.heads.6.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
142 -> ('encoder.layers.1.attention.sublayer.heads.6.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
143 -> ('encoder.layers.1.attention.sublayer.heads.7', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
144 -> ('encoder.layers.1.attention.sublayer.heads.7.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
145 -> ('encoder.layers.1.attention.sublayer.heads.7.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
146 -> ('encoder.layers.1.attention.sublayer.heads.7.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
147 -> ('encoder.layers.1.attention.sublayer.linear', Linear(in_features=256, out_features=128, bias=True))
148 -> ('encoder.layers.1.attention.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True))
149 -> ('encoder.layers.1.attention.dropout', Dropout(p=0.1, inplace=False))
150 -> ('encoder.layers.1.feed_forward', Residual(
(sublayer): MoeLayer(
(experts): ModuleList(
(0-7): 8 x FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
)
)
(gate): Linear(in_features=128, out_features=8, bias=False)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
))
151 -> ('encoder.layers.1.feed_forward.sublayer', MoeLayer(
(experts): ModuleList(
(0-7): 8 x FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
)
)
(gate): Linear(in_features=128, out_features=8, bias=False)
))
152 -> ('encoder.layers.1.feed_forward.sublayer.experts', ModuleList(
(0-7): 8 x FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
)
))
153 -> ('encoder.layers.1.feed_forward.sublayer.experts.0', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
154 -> ('encoder.layers.1.feed_forward.sublayer.experts.0.w1', Linear(in_features=128, out_features=512, bias=False))
155 -> ('encoder.layers.1.feed_forward.sublayer.experts.0.w2', Linear(in_features=512, out_features=128, bias=False))
156 -> ('encoder.layers.1.feed_forward.sublayer.experts.0.w3', Linear(in_features=128, out_features=512, bias=False))
157 -> ('encoder.layers.1.feed_forward.sublayer.experts.1', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
158 -> ('encoder.layers.1.feed_forward.sublayer.experts.1.w1', Linear(in_features=128, out_features=512, bias=False))
159 -> ('encoder.layers.1.feed_forward.sublayer.experts.1.w2', Linear(in_features=512, out_features=128, bias=False))
160 -> ('encoder.layers.1.feed_forward.sublayer.experts.1.w3', Linear(in_features=128, out_features=512, bias=False))
161 -> ('encoder.layers.1.feed_forward.sublayer.experts.2', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
162 -> ('encoder.layers.1.feed_forward.sublayer.experts.2.w1', Linear(in_features=128, out_features=512, bias=False))
163 -> ('encoder.layers.1.feed_forward.sublayer.experts.2.w2', Linear(in_features=512, out_features=128, bias=False))
164 -> ('encoder.layers.1.feed_forward.sublayer.experts.2.w3', Linear(in_features=128, out_features=512, bias=False))
165 -> ('encoder.layers.1.feed_forward.sublayer.experts.3', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
166 -> ('encoder.layers.1.feed_forward.sublayer.experts.3.w1', Linear(in_features=128, out_features=512, bias=False))
167 -> ('encoder.layers.1.feed_forward.sublayer.experts.3.w2', Linear(in_features=512, out_features=128, bias=False))
168 -> ('encoder.layers.1.feed_forward.sublayer.experts.3.w3', Linear(in_features=128, out_features=512, bias=False))
169 -> ('encoder.layers.1.feed_forward.sublayer.experts.4', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
170 -> ('encoder.layers.1.feed_forward.sublayer.experts.4.w1', Linear(in_features=128, out_features=512, bias=False))
171 -> ('encoder.layers.1.feed_forward.sublayer.experts.4.w2', Linear(in_features=512, out_features=128, bias=False))
172 -> ('encoder.layers.1.feed_forward.sublayer.experts.4.w3', Linear(in_features=128, out_features=512, bias=False))
173 -> ('encoder.layers.1.feed_forward.sublayer.experts.5', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
174 -> ('encoder.layers.1.feed_forward.sublayer.experts.5.w1', Linear(in_features=128, out_features=512, bias=False))
175 -> ('encoder.layers.1.feed_forward.sublayer.experts.5.w2', Linear(in_features=512, out_features=128, bias=False))
176 -> ('encoder.layers.1.feed_forward.sublayer.experts.5.w3', Linear(in_features=128, out_features=512, bias=False))
177 -> ('encoder.layers.1.feed_forward.sublayer.experts.6', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
178 -> ('encoder.layers.1.feed_forward.sublayer.experts.6.w1', Linear(in_features=128, out_features=512, bias=False))
179 -> ('encoder.layers.1.feed_forward.sublayer.experts.6.w2', Linear(in_features=512, out_features=128, bias=False))
180 -> ('encoder.layers.1.feed_forward.sublayer.experts.6.w3', Linear(in_features=128, out_features=512, bias=False))
181 -> ('encoder.layers.1.feed_forward.sublayer.experts.7', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
182 -> ('encoder.layers.1.feed_forward.sublayer.experts.7.w1', Linear(in_features=128, out_features=512, bias=False))
183 -> ('encoder.layers.1.feed_forward.sublayer.experts.7.w2', Linear(in_features=512, out_features=128, bias=False))
184 -> ('encoder.layers.1.feed_forward.sublayer.experts.7.w3', Linear(in_features=128, out_features=512, bias=False))
185 -> ('encoder.layers.1.feed_forward.sublayer.gate', Linear(in_features=128, out_features=8, bias=False))
186 -> ('encoder.layers.1.feed_forward.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True))
187 -> ('encoder.layers.1.feed_forward.dropout', Dropout(p=0.1, inplace=False))
188 -> ('encoder.layers.1.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True))
189 -> ('encoder.layers.2', MoE_TransformerGraphEncoderLayer(
(attention): Residual(
(sublayer): MultiHeadAttention(
(heads): ModuleList(
(0-7): 8 x AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
)
)
(linear): Linear(in_features=256, out_features=128, bias=True)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(feed_forward): Residual(
(sublayer): MoeLayer(
(experts): ModuleList(
(0-7): 8 x FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
)
)
(gate): Linear(in_features=128, out_features=8, bias=False)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
))
190 -> ('encoder.layers.2.attention', Residual(
(sublayer): MultiHeadAttention(
(heads): ModuleList(
(0-7): 8 x AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
)
)
(linear): Linear(in_features=256, out_features=128, bias=True)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
))
191 -> ('encoder.layers.2.attention.sublayer', MultiHeadAttention(
(heads): ModuleList(
(0-7): 8 x AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
)
)
(linear): Linear(in_features=256, out_features=128, bias=True)
))
192 -> ('encoder.layers.2.attention.sublayer.heads', ModuleList(
(0-7): 8 x AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
)
))
193 -> ('encoder.layers.2.attention.sublayer.heads.0', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
194 -> ('encoder.layers.2.attention.sublayer.heads.0.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
195 -> ('encoder.layers.2.attention.sublayer.heads.0.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
196 -> ('encoder.layers.2.attention.sublayer.heads.0.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
197 -> ('encoder.layers.2.attention.sublayer.heads.1', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
198 -> ('encoder.layers.2.attention.sublayer.heads.1.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
199 -> ('encoder.layers.2.attention.sublayer.heads.1.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
200 -> ('encoder.layers.2.attention.sublayer.heads.1.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
201 -> ('encoder.layers.2.attention.sublayer.heads.2', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
202 -> ('encoder.layers.2.attention.sublayer.heads.2.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
203 -> ('encoder.layers.2.attention.sublayer.heads.2.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
204 -> ('encoder.layers.2.attention.sublayer.heads.2.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
205 -> ('encoder.layers.2.attention.sublayer.heads.3', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
206 -> ('encoder.layers.2.attention.sublayer.heads.3.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
207 -> ('encoder.layers.2.attention.sublayer.heads.3.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
208 -> ('encoder.layers.2.attention.sublayer.heads.3.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
209 -> ('encoder.layers.2.attention.sublayer.heads.4', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
210 -> ('encoder.layers.2.attention.sublayer.heads.4.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
211 -> ('encoder.layers.2.attention.sublayer.heads.4.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
212 -> ('encoder.layers.2.attention.sublayer.heads.4.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
213 -> ('encoder.layers.2.attention.sublayer.heads.5', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
214 -> ('encoder.layers.2.attention.sublayer.heads.5.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
215 -> ('encoder.layers.2.attention.sublayer.heads.5.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
216 -> ('encoder.layers.2.attention.sublayer.heads.5.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
217 -> ('encoder.layers.2.attention.sublayer.heads.6', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
218 -> ('encoder.layers.2.attention.sublayer.heads.6.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
219 -> ('encoder.layers.2.attention.sublayer.heads.6.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
220 -> ('encoder.layers.2.attention.sublayer.heads.6.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
221 -> ('encoder.layers.2.attention.sublayer.heads.7', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
222 -> ('encoder.layers.2.attention.sublayer.heads.7.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
223 -> ('encoder.layers.2.attention.sublayer.heads.7.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
224 -> ('encoder.layers.2.attention.sublayer.heads.7.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
225 -> ('encoder.layers.2.attention.sublayer.linear', Linear(in_features=256, out_features=128, bias=True))
226 -> ('encoder.layers.2.attention.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True))
227 -> ('encoder.layers.2.attention.dropout', Dropout(p=0.1, inplace=False))
228 -> ('encoder.layers.2.feed_forward', Residual(
(sublayer): MoeLayer(
(experts): ModuleList(
(0-7): 8 x FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
)
)
(gate): Linear(in_features=128, out_features=8, bias=False)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
))
229 -> ('encoder.layers.2.feed_forward.sublayer', MoeLayer(
(experts): ModuleList(
(0-7): 8 x FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
)
)
(gate): Linear(in_features=128, out_features=8, bias=False)
))
230 -> ('encoder.layers.2.feed_forward.sublayer.experts', ModuleList(
(0-7): 8 x FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
)
))
231 -> ('encoder.layers.2.feed_forward.sublayer.experts.0', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
232 -> ('encoder.layers.2.feed_forward.sublayer.experts.0.w1', Linear(in_features=128, out_features=512, bias=False))
233 -> ('encoder.layers.2.feed_forward.sublayer.experts.0.w2', Linear(in_features=512, out_features=128, bias=False))
234 -> ('encoder.layers.2.feed_forward.sublayer.experts.0.w3', Linear(in_features=128, out_features=512, bias=False))
235 -> ('encoder.layers.2.feed_forward.sublayer.experts.1', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
236 -> ('encoder.layers.2.feed_forward.sublayer.experts.1.w1', Linear(in_features=128, out_features=512, bias=False))
237 -> ('encoder.layers.2.feed_forward.sublayer.experts.1.w2', Linear(in_features=512, out_features=128, bias=False))
238 -> ('encoder.layers.2.feed_forward.sublayer.experts.1.w3', Linear(in_features=128, out_features=512, bias=False))
239 -> ('encoder.layers.2.feed_forward.sublayer.experts.2', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
240 -> ('encoder.layers.2.feed_forward.sublayer.experts.2.w1', Linear(in_features=128, out_features=512, bias=False))
241 -> ('encoder.layers.2.feed_forward.sublayer.experts.2.w2', Linear(in_features=512, out_features=128, bias=False))
242 -> ('encoder.layers.2.feed_forward.sublayer.experts.2.w3', Linear(in_features=128, out_features=512, bias=False))
243 -> ('encoder.layers.2.feed_forward.sublayer.experts.3', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
244 -> ('encoder.layers.2.feed_forward.sublayer.experts.3.w1', Linear(in_features=128, out_features=512, bias=False))
245 -> ('encoder.layers.2.feed_forward.sublayer.experts.3.w2', Linear(in_features=512, out_features=128, bias=False))
246 -> ('encoder.layers.2.feed_forward.sublayer.experts.3.w3', Linear(in_features=128, out_features=512, bias=False))
247 -> ('encoder.layers.2.feed_forward.sublayer.experts.4', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
248 -> ('encoder.layers.2.feed_forward.sublayer.experts.4.w1', Linear(in_features=128, out_features=512, bias=False))
249 -> ('encoder.layers.2.feed_forward.sublayer.experts.4.w2', Linear(in_features=512, out_features=128, bias=False))
250 -> ('encoder.layers.2.feed_forward.sublayer.experts.4.w3', Linear(in_features=128, out_features=512, bias=False))
251 -> ('encoder.layers.2.feed_forward.sublayer.experts.5', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
252 -> ('encoder.layers.2.feed_forward.sublayer.experts.5.w1', Linear(in_features=128, out_features=512, bias=False))
253 -> ('encoder.layers.2.feed_forward.sublayer.experts.5.w2', Linear(in_features=512, out_features=128, bias=False))
254 -> ('encoder.layers.2.feed_forward.sublayer.experts.5.w3', Linear(in_features=128, out_features=512, bias=False))
255 -> ('encoder.layers.2.feed_forward.sublayer.experts.6', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
256 -> ('encoder.layers.2.feed_forward.sublayer.experts.6.w1', Linear(in_features=128, out_features=512, bias=False))
257 -> ('encoder.layers.2.feed_forward.sublayer.experts.6.w2', Linear(in_features=512, out_features=128, bias=False))
258 -> ('encoder.layers.2.feed_forward.sublayer.experts.6.w3', Linear(in_features=128, out_features=512, bias=False))
259 -> ('encoder.layers.2.feed_forward.sublayer.experts.7', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
260 -> ('encoder.layers.2.feed_forward.sublayer.experts.7.w1', Linear(in_features=128, out_features=512, bias=False))
261 -> ('encoder.layers.2.feed_forward.sublayer.experts.7.w2', Linear(in_features=512, out_features=128, bias=False))
262 -> ('encoder.layers.2.feed_forward.sublayer.experts.7.w3', Linear(in_features=128, out_features=512, bias=False))
263 -> ('encoder.layers.2.feed_forward.sublayer.gate', Linear(in_features=128, out_features=8, bias=False))
264 -> ('encoder.layers.2.feed_forward.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True))
265 -> ('encoder.layers.2.feed_forward.dropout', Dropout(p=0.1, inplace=False))
266 -> ('encoder.layers.2.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True))
267 -> ('encoder.layers.3', MoE_TransformerGraphEncoderLayer(
(attention): Residual(
(sublayer): MultiHeadAttention(
(heads): ModuleList(
(0-7): 8 x AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
)
)
(linear): Linear(in_features=256, out_features=128, bias=True)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(feed_forward): Residual(
(sublayer): MoeLayer(
(experts): ModuleList(
(0-7): 8 x FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
)
)
(gate): Linear(in_features=128, out_features=8, bias=False)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
))
268 -> ('encoder.layers.3.attention', Residual(
(sublayer): MultiHeadAttention(
(heads): ModuleList(
(0-7): 8 x AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
)
)
(linear): Linear(in_features=256, out_features=128, bias=True)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
))
269 -> ('encoder.layers.3.attention.sublayer', MultiHeadAttention(
(heads): ModuleList(
(0-7): 8 x AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
)
)
(linear): Linear(in_features=256, out_features=128, bias=True)
))
270 -> ('encoder.layers.3.attention.sublayer.heads', ModuleList(
(0-7): 8 x AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
)
))
271 -> ('encoder.layers.3.attention.sublayer.heads.0', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
272 -> ('encoder.layers.3.attention.sublayer.heads.0.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
273 -> ('encoder.layers.3.attention.sublayer.heads.0.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
274 -> ('encoder.layers.3.attention.sublayer.heads.0.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
275 -> ('encoder.layers.3.attention.sublayer.heads.1', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
276 -> ('encoder.layers.3.attention.sublayer.heads.1.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
277 -> ('encoder.layers.3.attention.sublayer.heads.1.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
278 -> ('encoder.layers.3.attention.sublayer.heads.1.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
279 -> ('encoder.layers.3.attention.sublayer.heads.2', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
280 -> ('encoder.layers.3.attention.sublayer.heads.2.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
281 -> ('encoder.layers.3.attention.sublayer.heads.2.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
282 -> ('encoder.layers.3.attention.sublayer.heads.2.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
283 -> ('encoder.layers.3.attention.sublayer.heads.3', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
284 -> ('encoder.layers.3.attention.sublayer.heads.3.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
285 -> ('encoder.layers.3.attention.sublayer.heads.3.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
286 -> ('encoder.layers.3.attention.sublayer.heads.3.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
287 -> ('encoder.layers.3.attention.sublayer.heads.4', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
288 -> ('encoder.layers.3.attention.sublayer.heads.4.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
289 -> ('encoder.layers.3.attention.sublayer.heads.4.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
290 -> ('encoder.layers.3.attention.sublayer.heads.4.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
291 -> ('encoder.layers.3.attention.sublayer.heads.5', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
292 -> ('encoder.layers.3.attention.sublayer.heads.5.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
293 -> ('encoder.layers.3.attention.sublayer.heads.5.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
294 -> ('encoder.layers.3.attention.sublayer.heads.5.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
295 -> ('encoder.layers.3.attention.sublayer.heads.6', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
296 -> ('encoder.layers.3.attention.sublayer.heads.6.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
297 -> ('encoder.layers.3.attention.sublayer.heads.6.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
298 -> ('encoder.layers.3.attention.sublayer.heads.6.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
299 -> ('encoder.layers.3.attention.sublayer.heads.7', AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
))
300 -> ('encoder.layers.3.attention.sublayer.heads.7.q_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
301 -> ('encoder.layers.3.attention.sublayer.heads.7.k_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
302 -> ('encoder.layers.3.attention.sublayer.heads.7.v_conv', Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1)))
303 -> ('encoder.layers.3.attention.sublayer.linear', Linear(in_features=256, out_features=128, bias=True))
304 -> ('encoder.layers.3.attention.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True))
305 -> ('encoder.layers.3.attention.dropout', Dropout(p=0.1, inplace=False))
306 -> ('encoder.layers.3.feed_forward', Residual(
(sublayer): MoeLayer(
(experts): ModuleList(
(0-7): 8 x FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
)
)
(gate): Linear(in_features=128, out_features=8, bias=False)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
))
307 -> ('encoder.layers.3.feed_forward.sublayer', MoeLayer(
(experts): ModuleList(
(0-7): 8 x FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
)
)
(gate): Linear(in_features=128, out_features=8, bias=False)
))
308 -> ('encoder.layers.3.feed_forward.sublayer.experts', ModuleList(
(0-7): 8 x FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
)
))
309 -> ('encoder.layers.3.feed_forward.sublayer.experts.0', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
310 -> ('encoder.layers.3.feed_forward.sublayer.experts.0.w1', Linear(in_features=128, out_features=512, bias=False))
311 -> ('encoder.layers.3.feed_forward.sublayer.experts.0.w2', Linear(in_features=512, out_features=128, bias=False))
312 -> ('encoder.layers.3.feed_forward.sublayer.experts.0.w3', Linear(in_features=128, out_features=512, bias=False))
313 -> ('encoder.layers.3.feed_forward.sublayer.experts.1', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
314 -> ('encoder.layers.3.feed_forward.sublayer.experts.1.w1', Linear(in_features=128, out_features=512, bias=False))
315 -> ('encoder.layers.3.feed_forward.sublayer.experts.1.w2', Linear(in_features=512, out_features=128, bias=False))
316 -> ('encoder.layers.3.feed_forward.sublayer.experts.1.w3', Linear(in_features=128, out_features=512, bias=False))
317 -> ('encoder.layers.3.feed_forward.sublayer.experts.2', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
318 -> ('encoder.layers.3.feed_forward.sublayer.experts.2.w1', Linear(in_features=128, out_features=512, bias=False))
319 -> ('encoder.layers.3.feed_forward.sublayer.experts.2.w2', Linear(in_features=512, out_features=128, bias=False))
320 -> ('encoder.layers.3.feed_forward.sublayer.experts.2.w3', Linear(in_features=128, out_features=512, bias=False))
321 -> ('encoder.layers.3.feed_forward.sublayer.experts.3', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
322 -> ('encoder.layers.3.feed_forward.sublayer.experts.3.w1', Linear(in_features=128, out_features=512, bias=False))
323 -> ('encoder.layers.3.feed_forward.sublayer.experts.3.w2', Linear(in_features=512, out_features=128, bias=False))
324 -> ('encoder.layers.3.feed_forward.sublayer.experts.3.w3', Linear(in_features=128, out_features=512, bias=False))
325 -> ('encoder.layers.3.feed_forward.sublayer.experts.4', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
326 -> ('encoder.layers.3.feed_forward.sublayer.experts.4.w1', Linear(in_features=128, out_features=512, bias=False))
327 -> ('encoder.layers.3.feed_forward.sublayer.experts.4.w2', Linear(in_features=512, out_features=128, bias=False))
328 -> ('encoder.layers.3.feed_forward.sublayer.experts.4.w3', Linear(in_features=128, out_features=512, bias=False))
329 -> ('encoder.layers.3.feed_forward.sublayer.experts.5', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
330 -> ('encoder.layers.3.feed_forward.sublayer.experts.5.w1', Linear(in_features=128, out_features=512, bias=False))
331 -> ('encoder.layers.3.feed_forward.sublayer.experts.5.w2', Linear(in_features=512, out_features=128, bias=False))
332 -> ('encoder.layers.3.feed_forward.sublayer.experts.5.w3', Linear(in_features=128, out_features=512, bias=False))
333 -> ('encoder.layers.3.feed_forward.sublayer.experts.6', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
334 -> ('encoder.layers.3.feed_forward.sublayer.experts.6.w1', Linear(in_features=128, out_features=512, bias=False))
335 -> ('encoder.layers.3.feed_forward.sublayer.experts.6.w2', Linear(in_features=512, out_features=128, bias=False))
336 -> ('encoder.layers.3.feed_forward.sublayer.experts.6.w3', Linear(in_features=128, out_features=512, bias=False))
337 -> ('encoder.layers.3.feed_forward.sublayer.experts.7', FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
))
338 -> ('encoder.layers.3.feed_forward.sublayer.experts.7.w1', Linear(in_features=128, out_features=512, bias=False))
339 -> ('encoder.layers.3.feed_forward.sublayer.experts.7.w2', Linear(in_features=512, out_features=128, bias=False))
340 -> ('encoder.layers.3.feed_forward.sublayer.experts.7.w3', Linear(in_features=128, out_features=512, bias=False))
341 -> ('encoder.layers.3.feed_forward.sublayer.gate', Linear(in_features=128, out_features=8, bias=False))
342 -> ('encoder.layers.3.feed_forward.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True))
343 -> ('encoder.layers.3.feed_forward.dropout', Dropout(p=0.1, inplace=False))
344 -> ('encoder.layers.3.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True))
345 -> ('encoder.positional_encoder', PositionalEncoder(
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
))
346 -> ('encoder.positional_encoder.norm', LayerNorm((128,), eps=1e-05, elementwise_affine=True))
347 -> ('out', Sequential(
(0): Linear(in_features=128, out_features=128, bias=True)
(1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(2): Linear(in_features=128, out_features=14, bias=True)
))
348 -> ('out.0', Linear(in_features=128, out_features=128, bias=True))
349 -> ('out.1', LayerNorm((128,), eps=1e-05, elementwise_affine=True))
350 -> ('out.2', Linear(in_features=128, out_features=14, bias=True))
Counting the model summary and the Number of parameters MoE_GCN model
model_summary :
model_summary
Layer_name Number of Parameters
====================================================================================================
MulticlassAccuracy() 1548
MulticlassAccuracy() 128
MulticlassAccuracy() 128
MulticlassF1Score() 64
MulticlassF1Score() 1484
MulticlassF1Score() 2112
MulticlassConfusionMatrix() 2112
SGCN(
(conv_layers): ModuleList(
(0): unit_gcn(
(conv_list): ModuleList(
(0-2): 3 x Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1))
)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
)
(1): unit_gcn(
(conv_list): ModuleList(
(0-2): 3 x Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1))
)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
)
(2): unit_gcn(
(conv_list): ModuleList(
(0-2): 3 x Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1))
)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
)
)
) 2112
MoE_TransformerGraphEncoder(
(layers): ModuleList(
(0-3): 4 x MoE_TransformerGraphEncoderLayer(
(attention): Residual(
(sublayer): MultiHeadAttention(
(heads): ModuleList(
(0-7): 8 x AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
)
)
(linear): Linear(in_features=256, out_features=128, bias=True)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(feed_forward): Residual(
(sublayer): MoeLayer(
(experts): ModuleList(
(0-7): 8 x FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
)
)
(gate): Linear(in_features=128, out_features=8, bias=False)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
)
(positional_encoder): PositionalEncoder(
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
) 128
Sequential(
(0): Linear(in_features=128, out_features=128, bias=True)
(1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(2): Linear(in_features=128, out_features=14, bias=True)
) 9644
====================================================================================================
Total Params:19460
model_summary
Layer_name Number of Parameters
====================================================================================================
MulticlassAccuracy() 1548
MulticlassAccuracy() 128
MulticlassAccuracy() 128
MulticlassF1Score() 64
MulticlassF1Score() 1484
MulticlassF1Score() 2112
MulticlassConfusionMatrix() 2112
SGCN(
(conv_layers): ModuleList(
(0): unit_gcn(
(conv_list): ModuleList(
(0-2): 3 x Conv2d(3, 32, kernel_size=(1, 1), stride=(1, 1))
)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
)
(1): unit_gcn(
(conv_list): ModuleList(
(0-2): 3 x Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1))
)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
)
(2): unit_gcn(
(conv_list): ModuleList(
(0-2): 3 x Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1))
)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
)
)
) 2112
MoE_TransformerGraphEncoder(
(layers): ModuleList(
(0-3): 4 x MoE_TransformerGraphEncoderLayer(
(attention): Residual(
(sublayer): MultiHeadAttention(
(heads): ModuleList(
(0-7): 8 x AttentionHead(
(q_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(k_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(v_conv): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
)
)
(linear): Linear(in_features=256, out_features=128, bias=True)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(feed_forward): Residual(
(sublayer): MoeLayer(
(experts): ModuleList(
(0-7): 8 x FeedForward(
(w1): Linear(in_features=128, out_features=512, bias=False)
(w2): Linear(in_features=512, out_features=128, bias=False)
(w3): Linear(in_features=128, out_features=512, bias=False)
)
)
(gate): Linear(in_features=128, out_features=8, bias=False)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
)
(positional_encoder): PositionalEncoder(
(norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
) 128
Sequential(
(0): Linear(in_features=128, out_features=128, bias=True)
(1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(2): Linear(in_features=128, out_features=14, bias=True)
) 9644
====================================================================================================
Total Params:19460
Counting the parameters MoE_GCN model
+------------------------------------------------------------+------------+
| Modules | Parameters |
+------------------------------------------------------------+------------+
| gcn.conv_layers.0.mask | 1452 |
| gcn.conv_layers.0.conv_list.0.weight | 96 |
| gcn.conv_layers.0.conv_list.0.bias | 32 |
| gcn.conv_layers.0.conv_list.1.weight | 96 |
| gcn.conv_layers.0.conv_list.1.bias | 32 |
| gcn.conv_layers.0.conv_list.2.weight | 96 |
| gcn.conv_layers.0.conv_list.2.bias | 32 |
| gcn.conv_layers.0.bn.weight | 32 |
| gcn.conv_layers.0.bn.bias | 32 |
| gcn.conv_layers.1.mask | 1452 |
| gcn.conv_layers.1.conv_list.0.weight | 2048 |
| gcn.conv_layers.1.conv_list.0.bias | 64 |
| gcn.conv_layers.1.conv_list.1.weight | 2048 |
| gcn.conv_layers.1.conv_list.1.bias | 64 |
| gcn.conv_layers.1.conv_list.2.weight | 2048 |
| gcn.conv_layers.1.conv_list.2.bias | 64 |
| gcn.conv_layers.1.bn.weight | 64 |
| gcn.conv_layers.1.bn.bias | 64 |
| gcn.conv_layers.2.mask | 1452 |
| gcn.conv_layers.2.conv_list.0.weight | 8192 |
| gcn.conv_layers.2.conv_list.0.bias | 128 |
| gcn.conv_layers.2.conv_list.1.weight | 8192 |
| gcn.conv_layers.2.conv_list.1.bias | 128 |
| gcn.conv_layers.2.conv_list.2.weight | 8192 |
| gcn.conv_layers.2.conv_list.2.bias | 128 |
| gcn.conv_layers.2.bn.weight | 128 |
| gcn.conv_layers.2.bn.bias | 128 |
| encoder.layers.0.attention.sublayer.heads.0.q_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.0.q_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.0.k_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.0.k_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.0.v_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.0.v_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.1.q_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.1.q_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.1.k_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.1.k_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.1.v_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.1.v_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.2.q_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.2.q_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.2.k_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.2.k_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.2.v_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.2.v_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.3.q_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.3.q_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.3.k_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.3.k_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.3.v_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.3.v_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.4.q_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.4.q_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.4.k_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.4.k_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.4.v_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.4.v_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.5.q_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.5.q_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.5.k_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.5.k_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.5.v_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.5.v_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.6.q_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.6.q_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.6.k_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.6.k_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.6.v_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.6.v_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.7.q_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.7.q_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.7.k_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.7.k_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.7.v_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.7.v_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.linear.weight | 32768 |
| encoder.layers.0.attention.sublayer.linear.bias | 128 |
| encoder.layers.0.attention.norm.weight | 128 |
| encoder.layers.0.attention.norm.bias | 128 |
| encoder.layers.0.feed_forward.sublayer.experts.0.w1.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.0.w2.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.0.w3.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.1.w1.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.1.w2.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.1.w3.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.2.w1.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.2.w2.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.2.w3.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.3.w1.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.3.w2.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.3.w3.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.4.w1.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.4.w2.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.4.w3.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.5.w1.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.5.w2.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.5.w3.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.6.w1.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.6.w2.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.6.w3.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.7.w1.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.7.w2.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.7.w3.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.gate.weight | 1024 |
| encoder.layers.0.feed_forward.norm.weight | 128 |
| encoder.layers.0.feed_forward.norm.bias | 128 |
| encoder.layers.0.norm.weight | 128 |
| encoder.layers.0.norm.bias | 128 |
| encoder.layers.1.attention.sublayer.heads.0.q_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.0.q_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.0.k_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.0.k_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.0.v_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.0.v_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.1.q_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.1.q_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.1.k_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.1.k_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.1.v_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.1.v_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.2.q_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.2.q_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.2.k_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.2.k_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.2.v_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.2.v_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.3.q_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.3.q_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.3.k_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.3.k_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.3.v_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.3.v_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.4.q_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.4.q_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.4.k_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.4.k_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.4.v_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.4.v_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.5.q_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.5.q_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.5.k_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.5.k_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.5.v_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.5.v_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.6.q_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.6.q_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.6.k_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.6.k_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.6.v_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.6.v_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.7.q_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.7.q_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.7.k_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.7.k_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.7.v_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.7.v_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.linear.weight | 32768 |
| encoder.layers.1.attention.sublayer.linear.bias | 128 |
| encoder.layers.1.attention.norm.weight | 128 |
| encoder.layers.1.attention.norm.bias | 128 |
| encoder.layers.1.feed_forward.sublayer.experts.0.w1.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.0.w2.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.0.w3.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.1.w1.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.1.w2.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.1.w3.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.2.w1.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.2.w2.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.2.w3.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.3.w1.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.3.w2.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.3.w3.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.4.w1.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.4.w2.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.4.w3.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.5.w1.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.5.w2.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.5.w3.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.6.w1.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.6.w2.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.6.w3.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.7.w1.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.7.w2.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.7.w3.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.gate.weight | 1024 |
| encoder.layers.1.feed_forward.norm.weight | 128 |
| encoder.layers.1.feed_forward.norm.bias | 128 |
| encoder.layers.1.norm.weight | 128 |
| encoder.layers.1.norm.bias | 128 |
| encoder.layers.2.attention.sublayer.heads.0.q_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.0.q_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.0.k_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.0.k_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.0.v_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.0.v_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.1.q_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.1.q_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.1.k_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.1.k_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.1.v_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.1.v_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.2.q_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.2.q_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.2.k_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.2.k_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.2.v_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.2.v_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.3.q_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.3.q_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.3.k_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.3.k_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.3.v_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.3.v_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.4.q_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.4.q_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.4.k_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.4.k_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.4.v_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.4.v_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.5.q_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.5.q_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.5.k_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.5.k_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.5.v_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.5.v_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.6.q_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.6.q_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.6.k_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.6.k_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.6.v_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.6.v_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.7.q_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.7.q_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.7.k_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.7.k_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.7.v_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.7.v_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.linear.weight | 32768 |
| encoder.layers.2.attention.sublayer.linear.bias | 128 |
| encoder.layers.2.attention.norm.weight | 128 |
| encoder.layers.2.attention.norm.bias | 128 |
| encoder.layers.2.feed_forward.sublayer.experts.0.w1.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.0.w2.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.0.w3.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.1.w1.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.1.w2.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.1.w3.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.2.w1.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.2.w2.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.2.w3.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.3.w1.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.3.w2.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.3.w3.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.4.w1.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.4.w2.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.4.w3.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.5.w1.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.5.w2.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.5.w3.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.6.w1.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.6.w2.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.6.w3.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.7.w1.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.7.w2.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.7.w3.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.gate.weight | 1024 |
| encoder.layers.2.feed_forward.norm.weight | 128 |
| encoder.layers.2.feed_forward.norm.bias | 128 |
| encoder.layers.2.norm.weight | 128 |
| encoder.layers.2.norm.bias | 128 |
| encoder.layers.3.attention.sublayer.heads.0.q_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.0.q_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.0.k_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.0.k_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.0.v_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.0.v_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.1.q_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.1.q_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.1.k_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.1.k_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.1.v_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.1.v_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.2.q_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.2.q_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.2.k_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.2.k_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.2.v_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.2.v_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.3.q_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.3.q_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.3.k_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.3.k_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.3.v_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.3.v_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.4.q_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.4.q_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.4.k_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.4.k_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.4.v_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.4.v_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.5.q_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.5.q_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.5.k_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.5.k_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.5.v_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.5.v_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.6.q_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.6.q_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.6.k_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.6.k_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.6.v_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.6.v_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.7.q_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.7.q_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.7.k_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.7.k_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.7.v_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.7.v_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.linear.weight | 32768 |
| encoder.layers.3.attention.sublayer.linear.bias | 128 |
| encoder.layers.3.attention.norm.weight | 128 |
| encoder.layers.3.attention.norm.bias | 128 |
| encoder.layers.3.feed_forward.sublayer.experts.0.w1.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.0.w2.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.0.w3.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.1.w1.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.1.w2.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.1.w3.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.2.w1.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.2.w2.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.2.w3.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.3.w1.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.3.w2.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.3.w3.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.4.w1.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.4.w2.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.4.w3.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.5.w1.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.5.w2.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.5.w3.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.6.w1.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.6.w2.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.6.w3.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.7.w1.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.7.w2.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.7.w3.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.gate.weight | 1024 |
| encoder.layers.3.feed_forward.norm.weight | 128 |
| encoder.layers.3.feed_forward.norm.bias | 128 |
| encoder.layers.3.norm.weight | 128 |
| encoder.layers.3.norm.bias | 128 |
| encoder.positional_encoder.norm.weight | 128 |
| encoder.positional_encoder.norm.bias | 128 |
| out.0.weight | 16384 |
| out.0.bias | 128 |
| out.1.weight | 128 |
| out.1.bias | 128 |
| out.2.weight | 1792 |
| out.2.bias | 14 |
+------------------------------------------------------------+------------+
Total Trainable Params: 6881810
| gcn.conv_layers.1.mask | 1452 |
| gcn.conv_layers.1.conv_list.0.weight | 2048 |
| gcn.conv_layers.1.conv_list.0.bias | 64 |
| gcn.conv_layers.1.conv_list.1.weight | 2048 |
| gcn.conv_layers.1.conv_list.1.bias | 64 |
| gcn.conv_layers.1.conv_list.2.weight | 2048 |
| gcn.conv_layers.1.conv_list.2.bias | 64 |
| gcn.conv_layers.1.bn.weight | 64 |
| gcn.conv_layers.1.bn.bias | 64 |
| gcn.conv_layers.2.mask | 1452 |
| gcn.conv_layers.2.conv_list.0.weight | 8192 |
| gcn.conv_layers.2.conv_list.0.bias | 128 |
| gcn.conv_layers.2.conv_list.1.weight | 8192 |
| gcn.conv_layers.2.conv_list.1.bias | 128 |
| gcn.conv_layers.2.conv_list.2.weight | 8192 |
| gcn.conv_layers.2.conv_list.2.bias | 128 |
| gcn.conv_layers.2.bn.weight | 128 |
| gcn.conv_layers.2.bn.bias | 128 |
| encoder.layers.0.attention.sublayer.heads.0.q_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.0.q_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.0.k_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.0.k_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.0.v_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.0.v_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.1.q_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.1.q_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.1.k_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.1.k_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.1.v_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.1.v_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.2.q_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.2.q_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.2.k_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.2.k_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.2.v_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.2.v_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.3.q_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.3.q_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.3.k_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.3.k_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.3.v_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.3.v_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.4.q_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.4.q_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.4.k_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.4.k_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.4.v_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.4.v_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.5.q_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.5.q_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.5.k_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.5.k_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.5.v_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.5.v_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.6.q_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.6.q_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.6.k_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.6.k_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.6.v_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.6.v_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.7.q_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.7.q_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.7.k_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.7.k_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.heads.7.v_conv.weight | 4096 |
| encoder.layers.0.attention.sublayer.heads.7.v_conv.bias | 32 |
| encoder.layers.0.attention.sublayer.linear.weight | 32768 |
| encoder.layers.0.attention.sublayer.linear.bias | 128 |
| encoder.layers.0.attention.norm.weight | 128 |
| encoder.layers.0.attention.norm.bias | 128 |
| encoder.layers.0.feed_forward.sublayer.experts.0.w1.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.0.w2.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.0.w3.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.1.w1.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.1.w2.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.1.w3.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.2.w1.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.2.w2.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.2.w3.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.3.w1.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.3.w2.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.3.w3.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.4.w1.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.4.w2.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.4.w3.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.5.w1.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.5.w2.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.5.w3.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.6.w1.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.6.w2.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.6.w3.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.7.w1.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.7.w2.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.experts.7.w3.weight | 65536 |
| encoder.layers.0.feed_forward.sublayer.gate.weight | 1024 |
| encoder.layers.0.feed_forward.norm.weight | 128 |
| encoder.layers.0.feed_forward.norm.bias | 128 |
| encoder.layers.0.norm.weight | 128 |
| encoder.layers.0.norm.bias | 128 |
| encoder.layers.1.attention.sublayer.heads.0.q_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.0.q_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.0.k_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.0.k_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.0.v_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.0.v_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.1.q_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.1.q_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.1.k_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.1.k_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.1.v_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.1.v_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.2.q_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.2.q_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.2.k_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.2.k_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.2.v_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.2.v_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.3.q_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.3.q_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.3.k_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.3.k_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.3.v_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.3.v_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.4.q_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.4.q_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.4.k_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.4.k_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.4.v_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.4.v_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.5.q_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.5.q_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.5.k_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.5.k_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.5.v_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.5.v_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.6.q_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.6.q_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.6.k_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.6.k_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.6.v_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.6.v_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.7.q_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.7.q_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.7.k_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.7.k_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.heads.7.v_conv.weight | 4096 |
| encoder.layers.1.attention.sublayer.heads.7.v_conv.bias | 32 |
| encoder.layers.1.attention.sublayer.linear.weight | 32768 |
| encoder.layers.1.attention.sublayer.linear.bias | 128 |
| encoder.layers.1.attention.norm.weight | 128 |
| encoder.layers.1.attention.norm.bias | 128 |
| encoder.layers.1.feed_forward.sublayer.experts.0.w1.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.0.w2.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.0.w3.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.1.w1.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.1.w2.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.1.w3.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.2.w1.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.2.w2.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.2.w3.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.3.w1.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.3.w2.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.3.w3.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.4.w1.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.4.w2.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.4.w3.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.5.w1.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.5.w2.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.5.w3.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.6.w1.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.6.w2.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.6.w3.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.7.w1.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.7.w2.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.experts.7.w3.weight | 65536 |
| encoder.layers.1.feed_forward.sublayer.gate.weight | 1024 |
| encoder.layers.1.feed_forward.norm.weight | 128 |
| encoder.layers.1.feed_forward.norm.bias | 128 |
| encoder.layers.1.norm.weight | 128 |
| encoder.layers.1.norm.bias | 128 |
| encoder.layers.2.attention.sublayer.heads.0.q_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.0.q_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.0.k_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.0.k_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.0.v_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.0.v_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.1.q_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.1.q_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.1.k_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.1.k_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.1.v_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.1.v_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.2.q_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.2.q_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.2.k_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.2.k_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.2.v_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.2.v_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.3.q_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.3.q_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.3.k_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.3.k_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.3.v_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.3.v_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.4.q_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.4.q_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.4.k_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.4.k_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.4.v_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.4.v_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.5.q_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.5.q_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.5.k_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.5.k_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.5.v_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.5.v_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.6.q_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.6.q_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.6.k_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.6.k_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.6.v_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.6.v_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.7.q_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.7.q_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.7.k_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.7.k_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.heads.7.v_conv.weight | 4096 |
| encoder.layers.2.attention.sublayer.heads.7.v_conv.bias | 32 |
| encoder.layers.2.attention.sublayer.linear.weight | 32768 |
| encoder.layers.2.attention.sublayer.linear.bias | 128 |
| encoder.layers.2.attention.norm.weight | 128 |
| encoder.layers.2.attention.norm.bias | 128 |
| encoder.layers.2.feed_forward.sublayer.experts.0.w1.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.0.w2.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.0.w3.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.1.w1.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.1.w2.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.1.w3.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.2.w1.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.2.w2.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.2.w3.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.3.w1.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.3.w2.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.3.w3.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.4.w1.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.4.w2.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.4.w3.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.5.w1.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.5.w2.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.5.w3.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.6.w1.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.6.w2.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.6.w3.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.7.w1.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.7.w2.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.experts.7.w3.weight | 65536 |
| encoder.layers.2.feed_forward.sublayer.gate.weight | 1024 |
| encoder.layers.2.feed_forward.norm.weight | 128 |
| encoder.layers.2.feed_forward.norm.bias | 128 |
| encoder.layers.2.norm.weight | 128 |
| encoder.layers.2.norm.bias | 128 |
| encoder.layers.3.attention.sublayer.heads.0.q_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.0.q_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.0.k_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.0.k_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.0.v_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.0.v_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.1.q_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.1.q_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.1.k_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.1.k_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.1.v_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.1.v_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.2.q_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.2.q_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.2.k_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.2.k_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.2.v_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.2.v_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.3.q_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.3.q_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.3.k_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.3.k_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.3.v_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.3.v_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.4.q_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.4.q_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.4.k_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.4.k_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.4.v_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.4.v_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.5.q_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.5.q_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.5.k_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.5.k_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.5.v_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.5.v_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.6.q_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.6.q_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.6.k_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.6.k_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.6.v_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.6.v_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.7.q_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.7.q_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.7.k_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.7.k_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.heads.7.v_conv.weight | 4096 |
| encoder.layers.3.attention.sublayer.heads.7.v_conv.bias | 32 |
| encoder.layers.3.attention.sublayer.linear.weight | 32768 |
| encoder.layers.3.attention.sublayer.linear.bias | 128 |
| encoder.layers.3.attention.norm.weight | 128 |
| encoder.layers.3.attention.norm.bias | 128 |
| encoder.layers.3.feed_forward.sublayer.experts.0.w1.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.0.w2.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.0.w3.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.1.w1.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.1.w2.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.1.w3.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.2.w1.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.2.w2.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.2.w3.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.3.w1.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.3.w2.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.3.w3.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.4.w1.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.4.w2.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.4.w3.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.5.w1.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.5.w2.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.5.w3.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.6.w1.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.6.w2.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.6.w3.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.7.w1.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.7.w2.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.experts.7.w3.weight | 65536 |
| encoder.layers.3.feed_forward.sublayer.gate.weight | 1024 |
| encoder.layers.3.feed_forward.norm.weight | 128 |
| encoder.layers.3.feed_forward.norm.bias | 128 |
| encoder.layers.3.norm.weight | 128 |
| encoder.layers.3.norm.bias | 128 |
| encoder.positional_encoder.norm.weight | 128 |
| encoder.positional_encoder.norm.bias | 128 |
| out.0.weight | 16384 |
| out.0.bias | 128 |
| out.1.weight | 128 |
| out.1.bias | 128 |
| out.2.weight | 1792 |
| out.2.bias | 14 |
+------------------------------------------------------------+------------+
Total Trainable Params: 6881810
FLOPs of the MoE_GCN model using OpenAI_flops : =
2083328 FLOPs
FLOPs of the MoE_GCN model using DeepMind : =
20748288 FLOPs
Collecting torchstat
Downloading torchstat-0.0.7-py3-none-any.whl (11 kB)
Requirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (from torchstat) (2.1.0+cu121)
Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from torchstat) (1.23.5)
Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from torchstat) (1.5.3)
Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->torchstat) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->torchstat) (2023.3.post1)
Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch->torchstat) (3.13.1)
Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch->torchstat) (4.5.0)
Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch->torchstat) (1.12)
Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch->torchstat) (3.2.1)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch->torchstat) (3.1.3)
Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch->torchstat) (2023.6.0)
Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch->torchstat) (2.1.0)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->torchstat) (1.16.0)
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch->torchstat) (2.1.4)
Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch->torchstat) (1.3.0)
+------------------------------------------------------------+------------+
| Modules | Parameters |
+------------------------------------------------------------+------------+
| gcn.conv_layers.0.mask | 1452 |
| gcn.conv_layers.0.conv_list.0.weight | 96 |
| gcn.conv_layers.0.conv_list.0.bias | 32 |
| gcn.conv_layers.0.conv_list.1.weight | 96 |
| gcn.conv_layers.0.conv_list.1.bias | 32 |
| gcn.conv_layers.0.conv_list.2.weight | 96 |
| gcn.conv_layers.0.conv_list.2.bias | 32 |
| gcn.conv_layers.0.bn.weight | 32 |
| gcn.conv_layers.0.bn.bias | 32 |
| gcn.conv_layers.0.bn.bias | 32 |
| gcn.conv_layers.0.bn.bias | 32 |
| gcn.conv_layers.0.bn.bias | 32 |
| gcn.conv_layers.0.bn.bias | 32 |
| gcn.conv_layers.0.bn.bias | 32 |
| gcn.conv_layers.0.bn.bias | 32 |
| gcn.conv_layers.0.bn.bias | 32 |
| gcn.conv_layers.0.bn.bias | 32 |
| gcn.conv_layers.0.bn.bias | 32 |
| gcn.conv_layers.0.bn.bias | 32 |
[ 0.4739, -0.4411, 0.5949],.bias | 32 |
...,
[ 0.4923, -0.3621, 0.5645],
[ 0.5081, -0.3883, 0.5798],
[ 0.5182, -0.3990, 0.5934]]],
[[[ 0.4553, -0.4093, 0.5347],
[ 0.4465, -0.3465, 0.5095],
[ 0.4286, -0.3852, 0.5241],
...,
[ 0.4509, -0.3077, 0.4728],
[ 0.4479, -0.3254, 0.4838],
[ 0.4530, -0.3408, 0.4978]],
[[ 0.4037, -0.3051, 0.4236],
[ 0.3883, -0.2474, 0.4012],
[ 0.3734, -0.2841, 0.4104],
...,
[ 0.4092, -0.2127, 0.3748],
[ 0.4185, -0.2356, 0.3855],
[ 0.4252, -0.2515, 0.3991]],
[[ 0.3537, -0.2618, 0.3555],
[ 0.3258, -0.2090, 0.3282],
[ 0.3217, -0.2452, 0.3408],
...,
[ 0.3415, -0.1797, 0.2958],
[ 0.3506, -0.2016, 0.3046],
[ 0.3611, -0.2148, 0.3186]],
...,
[[ 0.4537, -0.3549, 0.5033],
[ 0.4227, -0.3063, 0.4904],
[ 0.4194, -0.3419, 0.4946],
...,
[ 0.4334, -0.2780, 0.4736],
[ 0.4372, -0.3001, 0.4873],
[ 0.4425, -0.3181, 0.4995]],
[[ 0.4640, -0.3862, 0.5401],
[ 0.4427, -0.3413, 0.5315],
[ 0.4335, -0.3730, 0.5314],
...,
[ 0.4738, -0.3113, 0.5228],
[ 0.4929, -0.3358, 0.5369],
[ 0.5051, -0.3468, 0.5482]],
[[ 0.4655, -0.4041, 0.5552],
[ 0.4422, -0.3530, 0.5404],
[ 0.4380, -0.3914, 0.5487],
...,
[ 0.4567, -0.3171, 0.5157],
[ 0.4776, -0.3411, 0.5297],
[ 0.4967, -0.3589, 0.5422]]],
...,
[[[ 0.4761, -0.3570, 0.5141],
[ 0.4648, -0.3141, 0.5161],
[ 0.4576, -0.3426, 0.5166],
...,
[ 0.5142, -0.2463, 0.5095],
[ 0.5202, -0.2300, 0.5076],
[ 0.5223, -0.2150, 0.5060]],
[[ 0.3927, -0.2960, 0.4408],
[ 0.3717, -0.2445, 0.4256],
[ 0.3685, -0.2817, 0.4376],
...,
[ 0.3918, -0.1666, 0.3913],
[ 0.3900, -0.1506, 0.3827],
[ 0.3875, -0.1388, 0.3751]],
[[ 0.3311, -0.2876, 0.3770],
[ 0.3134, -0.2340, 0.3532],
[ 0.3020, -0.2676, 0.3640],
...,
[ 0.3366, -0.1689, 0.3178],
[ 0.3309, -0.1637, 0.3046],
[ 0.3255, -0.1634, 0.2930]],
...,
[[ 0.3970, -0.3313, 0.4459],
[ 0.3739, -0.2776, 0.4274],
[ 0.3668, -0.3141, 0.4362],
...,
[ 0.3846, -0.2333, 0.3969],
[ 0.3707, -0.2444, 0.3857],
[ 0.3743, -0.2543, 0.3905]],
[[ 0.4111, -0.3530, 0.4816],
[ 0.3957, -0.3066, 0.4776],
[ 0.3829, -0.3379, 0.4756],
...,
[ 0.4256, -0.2702, 0.4716],
[ 0.4197, -0.2851, 0.4655],
[ 0.4262, -0.3008, 0.4746]],
[[ 0.4676, -0.4057, 0.5600],
[ 0.4560, -0.3730, 0.5605],
[ 0.4467, -0.3971, 0.5617],
...,
[ 0.4902, -0.2986, 0.5512],
[ 0.4911, -0.2836, 0.5483],
[ 0.5034, -0.2781, 0.5599]]],
[[[ 0.4721, -0.4069, 0.5961],
[ 0.4707, -0.3673, 0.6005],
[ 0.4602, -0.3962, 0.6026],
...,
[ 0.4986, -0.2846, 0.5858],
[ 0.5057, -0.2652, 0.5839],
[ 0.5095, -0.2495, 0.5822]],
[[ 0.4048, -0.3119, 0.4769],
[ 0.3951, -0.2639, 0.4670],
[ 0.3832, -0.2988, 0.4758],
...,
[ 0.4350, -0.1855, 0.4479],
[ 0.4395, -0.1692, 0.4425],
[ 0.4435, -0.1551, 0.4377]],
[[ 0.3602, -0.2710, 0.3874],
[ 0.3429, -0.2231, 0.3582],
[ 0.3350, -0.2542, 0.3804],
...,
[ 0.3495, -0.1652, 0.3141],
[ 0.3383, -0.1565, 0.3000],
[ 0.3286, -0.1488, 0.2876]],
...,
[[ 0.4653, -0.3848, 0.5433],
[ 0.4530, -0.3342, 0.5315],
[ 0.4418, -0.3660, 0.5397],
...,
[ 0.4616, -0.3031, 0.5096],
[ 0.4674, -0.3284, 0.5250],
[ 0.4782, -0.3437, 0.5373]],
[[ 0.4766, -0.4024, 0.5700],
[ 0.4672, -0.3583, 0.5674],
[ 0.4549, -0.3893, 0.5701],
...,
[ 0.4827, -0.3129, 0.5544],
[ 0.4868, -0.3336, 0.5710],
[ 0.4939, -0.3441, 0.5810]],
[[ 0.4893, -0.4281, 0.5998],
[ 0.4710, -0.3846, 0.5879],
[ 0.4665, -0.4158, 0.5996],
...,
[ 0.4830, -0.3421, 0.5596],
[ 0.4835, -0.3640, 0.5749],
[ 0.4894, -0.3746, 0.5868]]],
[[[ 0.4661, -0.4360, 0.6053],
[ 0.4644, -0.3942, 0.6059],
[ 0.4469, -0.4223, 0.6035],
...,
[ 0.5182, -0.3283, 0.6059],
[ 0.5178, -0.3333, 0.6037],
[ 0.5292, -0.3455, 0.6152]],
[[ 0.4357, -0.3562, 0.5250],
[ 0.4243, -0.3055, 0.5140],
[ 0.4129, -0.3416, 0.5214],
...,
[ 0.4613, -0.2225, 0.4948],
[ 0.4654, -0.2058, 0.4900],
[ 0.4691, -0.1910, 0.4858]],
[[ 0.3920, -0.3078, 0.4274],
[ 0.3592, -0.2533, 0.4066],
[ 0.3542, -0.2891, 0.4083],
...,
[ 0.3804, -0.2067, 0.3905],
[ 0.3754, -0.2042, 0.3783],
[ 0.3706, -0.2030, 0.3676]],
...,
[[ 0.4513, -0.4002, 0.5616],
[ 0.4358, -0.3517, 0.5431],
[ 0.4258, -0.3837, 0.5538],
...,
[ 0.4320, -0.3158, 0.5094],
[ 0.4378, -0.3351, 0.5229],
[ 0.4490, -0.3474, 0.5371]],
[[ 0.4701, -0.4148, 0.5681],
[ 0.4479, -0.3735, 0.5515],
[ 0.4469, -0.4041, 0.5673],
...,
[ 0.4323, -0.2901, 0.5100],
[ 0.4419, -0.3081, 0.5235],
[ 0.4596, -0.3278, 0.5353]],
[[ 0.4701, -0.4338, 0.5783],
[ 0.4548, -0.3844, 0.5665],
[ 0.4445, -0.4182, 0.5731],
...,
[ 0.4607, -0.3052, 0.5426],
[ 0.4555, -0.3033, 0.5344],
[ 0.4608, -0.3103, 0.5418]]]]), tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0])])
2
dict_keys(['skeleton', 'label'])
tensor([[[[ 0.4939, -0.4103, 0.5915],
[ 0.4737, -0.3553, 0.5707],
[ 0.4599, -0.3896, 0.5775],
...,
[ 0.4801, -0.2952, 0.5397],
[ 0.4706, -0.3054, 0.5279],
[ 0.4703, -0.3167, 0.5310]],
[[ 0.4864, -0.3711, 0.5602],
[ 0.4609, -0.3071, 0.5350],
[ 0.4513, -0.3446, 0.5424],
...,
[ 0.4731, -0.2591, 0.5014],
[ 0.4591, -0.2642, 0.4880],
[ 0.4564, -0.2782, 0.4883]],
[[ 0.4212, -0.2986, 0.4492],
[ 0.3987, -0.2458, 0.4205],
[ 0.3858, -0.2760, 0.4282],
...,
[ 0.4163, -0.2065, 0.3856],
[ 0.3996, -0.2124, 0.3711],
[ 0.3905, -0.2104, 0.3684]],
...,
[[ 0.4576, -0.3808, 0.5104],
[ 0.4329, -0.3245, 0.4925],
[ 0.4201, -0.3548, 0.4903],
...,
[ 0.4615, -0.2862, 0.4808],
[ 0.4557, -0.3022, 0.4882],
[ 0.4561, -0.3109, 0.4997]],
[[ 0.4845, -0.4035, 0.5531],
[ 0.4633, -0.3530, 0.5352],
[ 0.4509, -0.3827, 0.5375],
...,
[ 0.4786, -0.3131, 0.5140],
[ 0.4782, -0.3320, 0.5252],
[ 0.4785, -0.3434, 0.5350]],
[[ 0.5020, -0.4166, 0.5738],
[ 0.4699, -0.3629, 0.5480],
[ 0.4667, -0.3985, 0.5586],
...,
[ 0.4755, -0.3057, 0.5077],
[ 0.4767, -0.3267, 0.5179],
[ 0.4811, -0.3479, 0.5321]]],
[[[ 0.4939, -0.4563, 0.5789],
[ 0.4638, -0.3953, 0.5506],
[ 0.4620, -0.4382, 0.5657],
...,
[ 0.4632, -0.3589, 0.5063],
[ 0.4661, -0.3812, 0.5163],
[ 0.4745, -0.4018, 0.5311]],
[[ 0.4456, -0.3599, 0.5136],
[ 0.4279, -0.2952, 0.4838],
[ 0.4181, -0.3321, 0.5008],
...,
[ 0.4411, -0.2501, 0.4356],
[ 0.4369, -0.2676, 0.4452],
[ 0.4389, -0.2807, 0.4601]],
[[ 0.3839, -0.2790, 0.4051],
[ 0.3551, -0.2230, 0.3712],
[ 0.3479, -0.2560, 0.3870],
...,
[ 0.3680, -0.1768, 0.3253],
[ 0.3622, -0.1935, 0.3308],
[ 0.3616, -0.2029, 0.3452]],
...,
[[ 0.4551, -0.3857, 0.5213],
[ 0.4337, -0.3419, 0.5154],
[ 0.4222, -0.3709, 0.5111],
...,
[ 0.4649, -0.3003, 0.5134],
[ 0.4720, -0.3259, 0.5276],
[ 0.4770, -0.3510, 0.5386]],
[[ 0.4612, -0.4040, 0.5458],
[ 0.4535, -0.3696, 0.5527],
[ 0.4339, -0.3905, 0.5403],
...,
[ 0.5015, -0.3442, 0.5705],
[ 0.5089, -0.3708, 0.5856],
[ 0.5125, -0.3900, 0.5944]],
[[ 0.5000, -0.4536, 0.5998],
[ 0.4767, -0.4069, 0.5885],
[ 0.4739, -0.4411, 0.5949],
...,
[ 0.4923, -0.3621, 0.5645],
[ 0.5081, -0.3883, 0.5798],
[ 0.5182, -0.3990, 0.5934]]],
[[[ 0.4553, -0.4093, 0.5347],
[ 0.4465, -0.3465, 0.5095],
[ 0.4286, -0.3852, 0.5241],
...,
[ 0.4509, -0.3077, 0.4728],
[ 0.4479, -0.3254, 0.4838],
[ 0.4530, -0.3408, 0.4978]],
[[ 0.4037, -0.3051, 0.4236],
[ 0.3883, -0.2474, 0.4012],
[ 0.3734, -0.2841, 0.4104],
...,
[ 0.4092, -0.2127, 0.3748],
[ 0.4185, -0.2356, 0.3855],
[ 0.4252, -0.2515, 0.3991]],
[[ 0.3537, -0.2618, 0.3555],
[ 0.3258, -0.2090, 0.3282],
[ 0.3217, -0.2452, 0.3408],
...,
[ 0.3415, -0.1797, 0.2958],
[ 0.3506, -0.2016, 0.3046],
[ 0.3611, -0.2148, 0.3186]],
...,
[[ 0.4537, -0.3549, 0.5033],
[ 0.4227, -0.3063, 0.4904],
[ 0.4194, -0.3419, 0.4946],
...,
[ 0.4334, -0.2780, 0.4736],
[ 0.4372, -0.3001, 0.4873],
[ 0.4425, -0.3181, 0.4995]],
[[ 0.4640, -0.3862, 0.5401],
[ 0.4427, -0.3413, 0.5315],
[ 0.4335, -0.3730, 0.5314],
...,
[ 0.4738, -0.3113, 0.5228],
[ 0.4929, -0.3358, 0.5369],
[ 0.5051, -0.3468, 0.5482]],
[[ 0.4655, -0.4041, 0.5552],
[ 0.4422, -0.3530, 0.5404],
[ 0.4380, -0.3914, 0.5487],
...,
[ 0.4567, -0.3171, 0.5157],
[ 0.4776, -0.3411, 0.5297],
[ 0.4967, -0.3589, 0.5422]]],
...,
[[[ 0.4761, -0.3570, 0.5141],
[ 0.4648, -0.3141, 0.5161],
[ 0.4576, -0.3426, 0.5166],
...,
[ 0.5142, -0.2463, 0.5095],
[ 0.5202, -0.2300, 0.5076],
[ 0.5223, -0.2150, 0.5060]],
[[ 0.3927, -0.2960, 0.4408],
[ 0.3717, -0.2445, 0.4256],
[ 0.3685, -0.2817, 0.4376],
...,
[ 0.3918, -0.1666, 0.3913],
[ 0.3900, -0.1506, 0.3827],
[ 0.3875, -0.1388, 0.3751]],
[[ 0.3311, -0.2876, 0.3770],
[ 0.3134, -0.2340, 0.3532],
[ 0.3020, -0.2676, 0.3640],
...,
[ 0.3366, -0.1689, 0.3178],
[ 0.3309, -0.1637, 0.3046],
[ 0.3255, -0.1634, 0.2930]],
...,
[[ 0.3970, -0.3313, 0.4459],
[ 0.3739, -0.2776, 0.4274],
[ 0.3668, -0.3141, 0.4362],
...,
[ 0.3846, -0.2333, 0.3969],
[ 0.3707, -0.2444, 0.3857],
[ 0.3743, -0.2543, 0.3905]],
[[ 0.4111, -0.3530, 0.4816],
[ 0.3957, -0.3066, 0.4776],
[ 0.3829, -0.3379, 0.4756],
...,
[ 0.4256, -0.2702, 0.4716],
[ 0.4197, -0.2851, 0.4655],
[ 0.4262, -0.3008, 0.4746]],
[[ 0.4676, -0.4057, 0.5600],
[ 0.4560, -0.3730, 0.5605],
[ 0.4467, -0.3971, 0.5617],
...,
[ 0.4902, -0.2986, 0.5512],
[ 0.4911, -0.2836, 0.5483],
[ 0.5034, -0.2781, 0.5599]]],
[[[ 0.4721, -0.4069, 0.5961],
[ 0.4707, -0.3673, 0.6005],
[ 0.4602, -0.3962, 0.6026],
...,
[ 0.4986, -0.2846, 0.5858],
[ 0.5057, -0.2652, 0.5839],
[ 0.5095, -0.2495, 0.5822]],
[[ 0.4048, -0.3119, 0.4769],
[ 0.3951, -0.2639, 0.4670],
[ 0.3832, -0.2988, 0.4758],
...,
[ 0.4350, -0.1855, 0.4479],
[ 0.4395, -0.1692, 0.4425],
[ 0.4435, -0.1551, 0.4377]],
[[ 0.3602, -0.2710, 0.3874],
[ 0.3429, -0.2231, 0.3582],
[ 0.3350, -0.2542, 0.3804],
...,
[ 0.3495, -0.1652, 0.3141],
[ 0.3383, -0.1565, 0.3000],
[ 0.3286, -0.1488, 0.2876]],
...,
[[ 0.4653, -0.3848, 0.5433],
[ 0.4530, -0.3342, 0.5315],
[ 0.4418, -0.3660, 0.5397],
...,
[ 0.4616, -0.3031, 0.5096],
[ 0.4674, -0.3284, 0.5250],
[ 0.4782, -0.3437, 0.5373]],
[[ 0.4766, -0.4024, 0.5700],
[ 0.4672, -0.3583, 0.5674],
[ 0.4549, -0.3893, 0.5701],
...,
[ 0.4827, -0.3129, 0.5544],
[ 0.4868, -0.3336, 0.5710],
[ 0.4939, -0.3441, 0.5810]],
[[ 0.4893, -0.4281, 0.5998],
[ 0.4710, -0.3846, 0.5879],
[ 0.4665, -0.4158, 0.5996],
...,
[ 0.4830, -0.3421, 0.5596],
[ 0.4835, -0.3640, 0.5749],
[ 0.4894, -0.3746, 0.5868]]],
[[[ 0.4661, -0.4360, 0.6053],
[ 0.4644, -0.3942, 0.6059],
[ 0.4469, -0.4223, 0.6035],
...,
[ 0.5182, -0.3283, 0.6059],
[ 0.5178, -0.3333, 0.6037],
[ 0.5292, -0.3455, 0.6152]],
[[ 0.4357, -0.3562, 0.5250],
[ 0.4243, -0.3055, 0.5140],
[ 0.4129, -0.3416, 0.5214],
...,
[ 0.4613, -0.2225, 0.4948],
[ 0.4654, -0.2058, 0.4900],
[ 0.4691, -0.1910, 0.4858]],
[[ 0.3920, -0.3078, 0.4274],
[ 0.3592, -0.2533, 0.4066],
[ 0.3542, -0.2891, 0.4083],
...,
[ 0.3804, -0.2067, 0.3905],
[ 0.3754, -0.2042, 0.3783],
[ 0.3706, -0.2030, 0.3676]],
...,
[[ 0.4513, -0.4002, 0.5616],
[ 0.4358, -0.3517, 0.5431],
[ 0.4258, -0.3837, 0.5538],
...,
[ 0.4320, -0.3158, 0.5094],
[ 0.4378, -0.3351, 0.5229],
[ 0.4490, -0.3474, 0.5371]],
[[ 0.4701, -0.4148, 0.5681],
[ 0.4479, -0.3735, 0.5515],
[ 0.4469, -0.4041, 0.5673],
...,
[ 0.4323, -0.2901, 0.5100],
[ 0.4419, -0.3081, 0.5235],
[ 0.4596, -0.3278, 0.5353]],
[[ 0.4701, -0.4338, 0.5783],
[ 0.4548, -0.3844, 0.5665],
[ 0.4445, -0.4182, 0.5731],
...,
[ 0.4607, -0.3052, 0.5426],
[ 0.4555, -0.3033, 0.5344],
[ 0.4608, -0.3103, 0.5418]]]])
skeleton
label
Tensor_dataT.size() = torch.Size([32, 8, 22, 3])
Tensor_dataT [[[ 0.45649411 -0.44376922 0.64408398]
[ 0.45470198 -0.38724606 0.63845301]
[ 0.43893905 -0.42612109 0.64874703]
[ 0.41352988 -0.38762114 0.65398598]
[ 0.38978973 -0.35307541 0.65376902]
[ 0.38361855 -0.32759178 0.65515703]
[ 0.4284792 -0.32936773 0.63953203]
[ 0.42679544 -0.27440213 0.63265598]
[ 0.42789929 -0.24478968 0.62921703]
[ 0.42692376 -0.22101636 0.62609202]
[ 0.45129005 -0.32722124 0.63175601]
[ 0.44714241 -0.26338693 0.619479 ]
[ 0.50353895 -0.34977931 0.62299418]
[ 0.3156789 -0.27295206 0.60414994]
[ 0.47331994 -0.33073168 0.62587798]
[ 0.47041377 -0.27057905 0.61708701]
[ 0.42616162 -0.25311683 0.71024507]
[ 0.46730407 -0.21198767 0.60850102]
[ 0.49502148 -0.34408698 0.619892 ]
[ 0.49964735 -0.29375331 0.61635399]
[ 0.50096575 -0.2707146 0.61472797]
[ 0.45703796 -0.25597774 0.53799719]]
[[ 0.47197036 -0.53988416 0.62220198]
[ 0.4580784 -0.48336113 0.60461497]
[ 0.44658563 -0.52154911 0.619412 ]
[ 0.41508607 -0.48072571 0.61257303]
[ 0.38082476 -0.44323452 0.589674 ]
[ 0.36590875 -0.41295902 0.57904899]
[ 0.41487425 -0.41403426 0.58618098]
[ 0.4140427 -0.3613101 0.57492298]
[ 0.41350103 -0.33505483 0.56929302]
[ 0.4128616 -0.3113708 0.56417602]
[ 0.44144987 -0.41669524 0.58362198]
[ 0.43370049 -0.3579911 0.57625699]
[ 0.49153033 -0.44347535 0.58263618]
[ 0.30505913 -0.3713189 0.56583893]
[ 0.46648639 -0.42415859 0.58316201]
[ 0.45920816 -0.35960788 0.55863303]
[ 0.41443498 -0.33983203 0.64373803]
[ 0.44764333 -0.31478569 0.53467399]
[ 0.49675979 -0.44231811 0.58563203]
[ 0.48508369 -0.37770261 0.560574 ]
[ 0.47726461 -0.3720665 0.549061 ]
[ 0.41848824 -0.3831209 0.46360517]]
[[ 0.48442138 -0.62001068 0.627913 ]
[ 0.49168067 -0.57390347 0.60613197]
[ 0.46249449 -0.58999824 0.617248 ]
[ 0.46103121 -0.54664181 0.59524101]
[ 0.47081903 -0.50676016 0.58063197]
[ 0.47703809 -0.47600041 0.568829 ]
[ 0.46432632 -0.4830178 0.574269 ]
[ 0.45322754 -0.45161847 0.54255003]
[ 0.44803504 -0.43584942 0.52669102]
[ 0.46494869 -0.43861626 0.532435 ]
[ 0.49320529 -0.50320813 0.58013397]
[ 0.4726163 -0.49277866 0.54636502]
[ 0.49780852 -0.61624818 0.53734219]
[ 0.31374727 -0.59338886 0.52973294]
[ 0.51733116 -0.52547568 0.58699799]
[ 0.49490084 -0.51341313 0.55295902]
[ 0.42256253 -0.5291977 0.63319808]
[ 0.45177362 -0.54055221 0.54193801]
[ 0.54645841 -0.56252827 0.598836 ]
[ 0.51718837 -0.54657465 0.56708002]
[ 0.50381804 -0.53947116 0.55249 ]
[ 0.45658055 -0.56645892 0.4813922 ]]
[[ 0.42587508 -0.67696014 0.56173801]
[ 0.46481211 -0.66463394 0.56095499]
[ 0.42960141 -0.64680746 0.55488998]
[ 0.45645956 -0.617573 0.54098803]
[ 0.48047119 -0.60097324 0.52756703]
[ 0.49974634 -0.59675506 0.51798499]
[ 0.49845378 -0.61679659 0.55171102]
[ 0.51597109 -0.64597169 0.54589701]
[ 0.5046869 -0.66281403 0.54299003]
[ 0.5010224 -0.68822165 0.55855399]
[ 0.5076827 -0.64872309 0.56002003]
[ 0.52990845 -0.67580205 0.55221999]
[ 0.58918724 -0.83106116 0.5905692 ]
[ 0.40330692 -0.7874534 0.58834797]
[ 0.5126011 -0.67765428 0.56693202]
[ 0.52397628 -0.69367545 0.55389702]
[ 0.4822849 -0.73224239 0.67502707]
[ 0.51807494 -0.72636618 0.59556901]
[ 0.51159101 -0.71302973 0.57522798]
[ 0.51961776 -0.71390895 0.562195 ]
[ 0.52242911 -0.72957377 0.580863 ]
[ 0.4730504 -0.7378266 0.51739216]]
[[ 0.28875737 -0.70936456 0.60423601]
[ 0.31463972 -0.6756929 0.588386 ]
[ 0.28418101 -0.67239651 0.58934498]
[ 0.30820475 -0.66839428 0.57322299]
[ 0.32074619 -0.62880076 0.561692 ]
[ 0.34317953 -0.6224781 0.55596298]
[ 0.33162814 -0.60459652 0.556265 ]
[ 0.3104165 -0.60353749 0.52642602]
[ 0.28594978 -0.60147305 0.51150697]
[ 0.27226425 -0.61648274 0.51690602]
[ 0.34866905 -0.63791372 0.56946599]
[ 0.33020677 -0.64519455 0.54184502]
[ 0.38262178 -0.79788928 0.57402021]
[ 0.4739, -0.4411, 0.5949],.bias | 32 |
WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
<ipython-input-186-f54b70cf0824>:8: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
Tensor_dataT = torch.tensor(dataT['skeleton']);
<ipython-input-186-f54b70cf0824>:9: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
Tensor_labelsT = torch.tensor(dataT['label']);
WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
[ 0.4739, -0.4411, 0.5949],.bias | 32 |
<ipython-input-187-dfd265fbff9e>:8: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
Tensor_dataT = torch.tensor(dataT['skeleton']);
<ipython-input-187-dfd265fbff9e>:9: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
Tensor_labelsT = torch.tensor(dataT['label']);
WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
[ 0.4739, -0.4411, 0.5949],.bias | 32 |
[ 0.4739, -0.4411, 0.5949],.bias | 32 |
[ 0.4739, -0.4411, 0.5949],.bias | 32 |