Update README.md
Browse files
README.md
CHANGED
@@ -23,10 +23,17 @@ It achieves the following results on the evaluation set:
|
|
23 |
|
24 |
```python
|
25 |
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
30 |
```
|
31 |
|
32 |
For generation, we can use the model's `.generate()` method. Remember that the prompt needs a **Spanish** template:
|
@@ -57,7 +64,9 @@ Simplifica la siguiente frase
|
|
57 |
output = tokenizer.decode(seq, skip_special_tokens=True)
|
58 |
print(output.split("### Respuesta:")[-1].strip())
|
59 |
|
60 |
-
generate("
|
|
|
|
|
61 |
|
62 |
```
|
63 |
|
|
|
23 |
|
24 |
```python
|
25 |
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline
|
26 |
+
from peft import PeftConfig, PeftModel
|
27 |
+
import torch
|
28 |
+
from accelerate import init_empty_weights, load_checkpoint_and_dispatch, infer_auto_device_map
|
29 |
|
30 |
+
|
31 |
+
repo_name = "CLARA-MeD/bertin-gpt"
|
32 |
+
config = PeftConfig.from_pretrained(repo_name)
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
34 |
+
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path,torch_dtype=torch.float16,
|
35 |
+
device_map="auto")
|
36 |
+
model = PeftModel.from_pretrained(model, repo_name)
|
37 |
```
|
38 |
|
39 |
For generation, we can use the model's `.generate()` method. Remember that the prompt needs a **Spanish** template:
|
|
|
64 |
output = tokenizer.decode(seq, skip_special_tokens=True)
|
65 |
print(output.split("### Respuesta:")[-1].strip())
|
66 |
|
67 |
+
generate("Acromegalia")
|
68 |
+
# La acromegalia es un trastorno causado por un exceso de hormona del crecimiento en el cuerpo.
|
69 |
+
|
70 |
|
71 |
```
|
72 |
|