CWhy commited on
Commit
ecc9fd8
1 Parent(s): ad54fa8
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: -19.35 +/- 20.09
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 277.98 +/- 14.82
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9e9e8b8310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9e9e8b83a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9e9e8b8430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9e9e8b84c0>", "_build": "<function ActorCriticPolicy._build at 0x7f9e9e8b8550>", "forward": "<function ActorCriticPolicy.forward at 0x7f9e9e8b85e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9e9e8b8670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9e9e8b8700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9e9e8b8790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9e9e8b8820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9e9e8b88b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9e9e8acf60>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVTwAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLQEtAZXUu", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": [64, 64]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651684299.3443153, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZQB76DhBW8zgSFvZBgxzwa1IE8LrDcPQAAgD8AAIA/TcoFvvz9Ej0iBiQ/DQWAPRufxr0edKk+AAAAAAAAAAAzdQI99rwlujD+azWE534w3xCLOipKqLQAAIA/AACAP7PwN70IEZA96vvFPtX4AD4O+Po+86jZPQAAAAAAAAAA2lfHPYccjT9AJjA9rnQIv2tJKz72/Ca+AAAAAAAAAABmKno9o3RGPfUDoT0r5va8jN2/PuQXNL8AAAAAAAAAADNXWz18Mps/9ywBveyGEb9IuBA9HnhmvgAAAAAAAAAAgKnuPX3Njj9tws69ph2zvgWywD3Gs5y+AAAAAAAAAABNDMg93WZqP56+vL1ga+a+9ClbPlqqPb4AAAAAAAAAANbIlT6z7Fo/A8QRvC5zAL8QyP4+ITwsvgAAAAAAAAAA99UNv579pj5C+iK+anwzvv8G375uCYC+AAAAAAAAAAAA/be9tJ72PfK10j6hPZ29v3K6PpZkZT4AAAAAAAAAAC0OOb4BJbw9W0yiPmyaRr6ASto+Yg3dOwAAAAAAAAAAM5kavK7Fxrrj1mi6u62tPFX3vDpzj5W9AACAPwAAgD8NQum9jB4xPkMd8z6wE869alxbPiCvmz4AAAAAAAAAAGJIFr9aEh0/HhuQvSFHhr5vbBq+AyzPNgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyv55GrC8cUCUhpRSlIwBbJRNFwGMAXSUR0CvArSH2ys0dX2UKGgGaAloD0MI7Es2Huyfb0CUhpRSlGgVTaoBaBZHQK8DErPMSsd1fZQoaAZoCWgPQwha1v1j4XFwQJSGlFKUaBVN9QFoFkdArwQFpsXSB3V9lChoBmgJaA9DCBixTwAFSnJAlIaUUpRoFU1xAWgWR0CvBA2Hck+pdX2UKGgGaAloD0MIEywOZ/6MbkCUhpRSlGgVTQEBaBZHQK8LOtPpIMB1fZQoaAZoCWgPQwj0NctlY/9xQJSGlFKUaBVL/GgWR0CvC0XDWK/EdX2UKGgGaAloD0MImngHeJKCc0CUhpRSlGgVTRoBaBZHQK8Lb3GGVRl1fZQoaAZoCWgPQwiNXaJ6a2lwQJSGlFKUaBVNKgFoFkdArwwAhpxm03V9lChoBmgJaA9DCF0ZVBucOnBAlIaUUpRoFU0jAWgWR0CvDBot+TePdX2UKGgGaAloD0MIQpPEknJcU8CUhpRSlGgVTegDaBZHQK8MStmtheB1fZQoaAZoCWgPQwj2QCswJGFyQJSGlFKUaBVNFgFoFkdArw1zmbLEDXV9lChoBmgJaA9DCIl7LH3otW9AlIaUUpRoFU0wAWgWR0CvDYJAlfJFdX2UKGgGaAloD0MIVi3pKAeBQUCUhpRSlGgVS7doFkdArw48K1G9YnV9lChoBmgJaA9DCEZgrG/gMG9AlIaUUpRoFU0tAWgWR0CvDlREnb7CdX2UKGgGaAloD0MIFCF1O/tIcECUhpRSlGgVTWwBaBZHQK8OgWbgCOp1fZQoaAZoCWgPQwiWkuUklDBAQJSGlFKUaBVL/2gWR0CvDxkP1+RYdX2UKGgGaAloD0MIe2ZJgJqAcUCUhpRSlGgVTUIBaBZHQK8PIpVCHAR1fZQoaAZoCWgPQwgo1T4dz4pyQJSGlFKUaBVNmgFoFkdArw85m29cr3V9lChoBmgJaA9DCFRx4xbzPW5AlIaUUpRoFU2NAWgWR0CvD4l/H5rQdX2UKGgGaAloD0MIyqZc4Z06cECUhpRSlGgVS+FoFkdArw+OGVRk3HV9lChoBmgJaA9DCAn9TL0u+XFAlIaUUpRoFU0YAWgWR0CvD589W6sidX2UKGgGaAloD0MImrSpusc5bkCUhpRSlGgVS/poFkdArw/oHcDbJ3V9lChoBmgJaA9DCBqiCn8Gkm5AlIaUUpRoFU1BAWgWR0CvEAFjmSyMdX2UKGgGaAloD0MIyZBj61mIckCUhpRSlGgVTRcBaBZHQK8QYntOVPh1fZQoaAZoCWgPQwjoLR7ec1BwQJSGlFKUaBVNJAFoFkdArxGUCHRCyHV9lChoBmgJaA9DCEN1c/G38HBAlIaUUpRoFU0VAWgWR0CvEkdytFKDdX2UKGgGaAloD0MIqU4Hsp4yPsCUhpRSlGgVS8loFkdArxJQN3GGVXV9lChoBmgJaA9DCPz7jAtH/3BAlIaUUpRoFU0vAWgWR0CvEtTXrdFfdX2UKGgGaAloD0MIgSIWMWwdcECUhpRSlGgVTUsBaBZHQK8TeRJ2+wl1fZQoaAZoCWgPQwgwhJz3PyJwQJSGlFKUaBVNDQFoFkdArxOW23KB/nV9lChoBmgJaA9DCEFl/PsMe3BAlIaUUpRoFU0sAWgWR0CvE6qwyIpIdX2UKGgGaAloD0MIKNU+HY9kckCUhpRSlGgVS/loFkdArxPNvsJID3V9lChoBmgJaA9DCGTPnstU8XFAlIaUUpRoFU1dAWgWR0CvFEnYYixFdX2UKGgGaAloD0MI6/8c5st8bkCUhpRSlGgVTWYBaBZHQK8U4hzNliB1fZQoaAZoCWgPQwhE96xrtFwlwJSGlFKUaBVNhQFoFkdArxTyP+4smXV9lChoBmgJaA9DCFQZxt1gXXBAlIaUUpRoFU1gAWgWR0CvFT28yvcKdX2UKGgGaAloD0MIXJNuSyQvcUCUhpRSlGgVTU0BaBZHQK8VikSmIj51fZQoaAZoCWgPQwjh62tdqixwwJSGlFKUaBVLqGgWR0CvFlTzVc2SdX2UKGgGaAloD0MIWOVC5V8GU0CUhpRSlGgVTegDaBZHQK8WVYKYzBR1fZQoaAZoCWgPQwgpl8YvvBxKwJSGlFKUaBVL42gWR0CvFwp5u63BdX2UKGgGaAloD0MIlGsKZPZXcECUhpRSlGgVTXUBaBZHQK8Xk8mKIi11fZQoaAZoCWgPQwj3dktyQHRuQJSGlFKUaBVNdgFoFkdArxg8Iw/PgXV9lChoBmgJaA9DCJCGU+YmL3JAlIaUUpRoFU1bAWgWR0CvGE2FN+LFdX2UKGgGaAloD0MImQ8IdCaHb0CUhpRSlGgVTXoBaBZHQK8YVbnHNot1fZQoaAZoCWgPQwh0et6NhTthwJSGlFKUaBVLomgWR0CvGPWWIGhVdX2UKGgGaAloD0MIwHrctxoFc0CUhpRSlGgVTRoBaBZHQK8ZUQHzH0d1fZQoaAZoCWgPQwjQDyOEx2NvQJSGlFKUaBVNeQFoFkdArxmS+10DEHV9lChoBmgJaA9DCEetMH2v2GvAlIaUUpRoFU2KAWgWR0CvGabG3nZCdX2UKGgGaAloD0MI1SMNbmvZcECUhpRSlGgVTVYBaBZHQK8ZqsijcmB1fZQoaAZoCWgPQwgaa39ne3xTQJSGlFKUaBVN6ANoFkdArxqBkd3jdnV9lChoBmgJaA9DCGx55XrbfG9AlIaUUpRoFU18AWgWR0CvGsoVuaWpdX2UKGgGaAloD0MIgxQ8hdx5cUCUhpRSlGgVTVgBaBZHQK8i/jtG/et1fZQoaAZoCWgPQwjUDRR4JycuwJSGlFKUaBVLlWgWR0CvI69fCyhSdX2UKGgGaAloD0MIJo+n5Qc6cECUhpRSlGgVTSwBaBZHQK8j7D6WPcV1fZQoaAZoCWgPQwgNHTuoxLVoQJSGlFKUaBVN1gFoFkdAryTfFWGRFXV9lChoBmgJaA9DCHIycasglXBAlIaUUpRoFU2aAWgWR0CvJShje9BbdX2UKGgGaAloD0MInrEv2XhaVECUhpRSlGgVTegDaBZHQK8lQ9L6DXh1fZQoaAZoCWgPQwhcHJWbKCtuQJSGlFKUaBVNMAFoFkdAryVuQ2dd3XV9lChoBmgJaA9DCM5vmGiQ83BAlIaUUpRoFU0TAWgWR0CvJZZhKDkEdX2UKGgGaAloD0MIKhkAqjjRakCUhpRSlGgVTUABaBZHQK8loN7SiM51fZQoaAZoCWgPQwjSGRh5mcxyQJSGlFKUaBVNCwFoFkdArycHJo0yg3V9lChoBmgJaA9DCFLTLqbZfXBAlIaUUpRoFU2wAWgWR0CvJ0v+wTufdX2UKGgGaAloD0MIjuVd9QCKbUCUhpRSlGgVTWUBaBZHQK8ndSUC7sh1fZQoaAZoCWgPQwgzpfW3BHNpQJSGlFKUaBVN6wFoFkdAryekJx//enV9lChoBmgJaA9DCPLvMy4c9W9AlIaUUpRoFU1sAWgWR0CvJ6yFwkxAdX2UKGgGaAloD0MI3xrYKkF2bkCUhpRSlGgVTTYBaBZHQK8oDrKNhmZ1fZQoaAZoCWgPQwjh1AeS99FwQJSGlFKUaBVNGgFoFkdAryhTcbiqAHV9lChoBmgJaA9DCMTPfw/exm9AlIaUUpRoFU1WAWgWR0CvKJEWykbhdX2UKGgGaAloD0MISguXVVh2akCUhpRSlGgVTa0BaBZHQK8olNL127p1fZQoaAZoCWgPQwh07+GS48ZwQJSGlFKUaBVNLwFoFkdAryi+bgCOm3V9lChoBmgJaA9DCAbWcfxQi3BAlIaUUpRoFU0mAWgWR0CvKTnFo+OfdX2UKGgGaAloD0MITYbj+UxrcECUhpRSlGgVTSwBaBZHQK8piV8kUsZ1fZQoaAZoCWgPQwhK0jWTb7ZxQJSGlFKUaBVNQAFoFkdArymzGecx03V9lChoBmgJaA9DCAqBXOLIbVDAlIaUUpRoFUvMaBZHQK8p9rWRRuV1fZQoaAZoCWgPQwi9qUiFsWlwQJSGlFKUaBVNRwFoFkdAryn5owmE5HV9lChoBmgJaA9DCDy9UpYhukPAlIaUUpRoFUujaBZHQK8qRSQYDT11fZQoaAZoCWgPQwjFyf0OxdlsQJSGlFKUaBVNXQFoFkdArypda6jFh3V9lChoBmgJaA9DCJrMeFspJnFAlIaUUpRoFU1hAWgWR0CvKnE8JUo8dX2UKGgGaAloD0MI4e6s3XaBD0CUhpRSlGgVTQkBaBZHQK8r6Ln9vTB1fZQoaAZoCWgPQwiUTbnCu+tvQJSGlFKUaBVNUAFoFkdArywGdf9gnnV9lChoBmgJaA9DCLJHqBlS+TVAlIaUUpRoFU0ZAWgWR0CvLC00elsQdX2UKGgGaAloD0MIWOatuk6HckCUhpRSlGgVTWsBaBZHQK8sR+hGpdd1fZQoaAZoCWgPQwgMyF7v/lhtQJSGlFKUaBVNewFoFkdAryy9Wn0kGHV9lChoBmgJaA9DCNcYdEJojGxAlIaUUpRoFU1GAWgWR0CvLTHxz7uVdX2UKGgGaAloD0MIQ61p3nGePUCUhpRSlGgVS7poFkdAry1GaF23a3V9lChoBmgJaA9DCNAPI4THNXBAlIaUUpRoFU2lAWgWR0CvLeycbzbwdX2UKGgGaAloD0MIt17TgwIdcUCUhpRSlGgVTWUBaBZHQK8ublS0jTt1fZQoaAZoCWgPQwi/K4L/LWdxQJSGlFKUaBVNbAFoFkdAry7sURFqjHV9lChoBmgJaA9DCMsvgzEi7G5AlIaUUpRoFU1PAWgWR0CvLwewC8vmdX2UKGgGaAloD0MIOiLfpdQkaECUhpRSlGgVTS0CaBZHQK8vE0zCUHJ1fZQoaAZoCWgPQwgAA0GAzLZxQJSGlFKUaBVNPAFoFkdAry87vy9VWHV9lChoBmgJaA9DCN4CCYof3W9AlIaUUpRoFU1HAWgWR0CvL0Zd4VyndX2UKGgGaAloD0MIlL4Qct5nb0CUhpRSlGgVTXcBaBZHQK8vReQdS2p1fZQoaAZoCWgPQwikpfJ2hDJqQJSGlFKUaBVNsgFoFkdArzBWrlvIfnV9lChoBmgJaA9DCI7onnVNP3BAlIaUUpRoFU0eAWgWR0CvMJxK6FufdX2UKGgGaAloD0MIvRqgNBRlckCUhpRSlGgVTSUBaBZHQK8xMbTc6/91fZQoaAZoCWgPQwjJdr6fGuNoQJSGlFKUaBVNTwFoFkdArzE2sq8UVXV9lChoBmgJaA9DCMi1oWIclG9AlIaUUpRoFU1JAWgWR0CvMT9cB2fTdX2UKGgGaAloD0MIvsCsUKQyb0CUhpRSlGgVTVkBaBZHQK8xQ2Kl54Z1fZQoaAZoCWgPQwgi/fZ1YNltQJSGlFKUaBVL7GgWR0CvMWOgxrSFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-lowlatency-x86_64-with-glibc2.29 #123-Ubuntu SMP PREEMPT Fri Apr 8 09:52:18 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0a0a81b3a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0a0a81b430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0a0a81b4c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0a0a81b550>", "_build": "<function ActorCriticPolicy._build at 0x7f0a0a81b5e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0a0a81b670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0a0a81b700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0a0a81b790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0a0a81b820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0a0a81b8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0a0a81b940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0a0a80ff60>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVYgAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZRLQGGMAnZmlF2US0BhdWF1Lg==", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": [{"pi": [64], "vf": [64]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651684751.4650345, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGu2sL7Tfqc+cAVnPnrpxr727IC+UAExPgAAAAAAAAAAzS4fvXEXUz8S1VW9nEsbv8g5Fb26FW+9AAAAAAAAAACav3e98ty6P1Oz4r6r8wA8NkUiPXlBLL0AAAAAAAAAAPM3tL3gx+c+l2fIPfxStb7Sbq+9o+gIPQAAAAAAAAAAAC6svVwTMrpEY8G67JZdttfbtDu9iOA5AAAAAAAAgD9axc499vcYP8qs+b3mHgS/lHyDPQy6tb0AAAAAAAAAAFoLVD5mDK8+gYeIvr045L7rtZY9JaljvgAAAAAAAAAAjfwEviyiqT7lVhs+9vq5vo6sP736VIk8AAAAAAAAAADi+IC+z5ZtPiemhD6qFIu+le0YviBI5T0AAAAAAAAAAIYWCT7G44Y+x3C3vqGK175c/f29VuxjvQAAAAAAAAAADa3tvUQUPz+ts+G9THIrvzJ5Eb4nZbI8AAAAAAAAAABNgb09pN+SP2qQ2D7CKQ6/Qr8vPuqhpT4AAAAAAAAAADNAdz325Ei6Rt2evV6DKj3fxiS6P/8QvgAAgD8AAIA/5rkPPXuiuLoQUgY0iZE/L30l7TjEnaWzAACAPwAAgD+z1AW+Gz+FP5IK9b6UPE+/rT80vhcBAb4AAAAAAAAAAOZImr2PAm64XeT7Nr6r9zFRYc+6FcoStgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzH7d6U6cc0CUhpRSlIwBbJRL0owBdJRHQLBKa4HX2/V1fZQoaAZoCWgPQwgTQ3IycRFvQJSGlFKUaBVLzGgWR0CwSoRVU+9rdX2UKGgGaAloD0MIfLjkuFM/U0CUhpRSlGgVS5JoFkdAsEqQAFPi1nV9lChoBmgJaA9DCEsGgCoum3BAlIaUUpRoFUvEaBZHQLBKmpc5bQl1fZQoaAZoCWgPQwhNui2RC/lvQJSGlFKUaBVLxGgWR0CwSq+qioKldX2UKGgGaAloD0MIkuo7vygIc0CUhpRSlGgVS9hoFkdAsEq+FDfFaXV9lChoBmgJaA9DCBDLZg5Js3FAlIaUUpRoFUvVaBZHQLBKw6wMYuV1fZQoaAZoCWgPQwiJKZFEL+9wQJSGlFKUaBVLzGgWR0CwSsxWxQizdX2UKGgGaAloD0MIt7OvPEilcUCUhpRSlGgVS+NoFkdAsEriA7Ppp3V9lChoBmgJaA9DCDYhrTEojHJAlIaUUpRoFUu7aBZHQLBK9rUb1h91fZQoaAZoCWgPQwgkKH6MuTZzQJSGlFKUaBVL6WgWR0CwSwA0TDfndX2UKGgGaAloD0MIopbmVkjLckCUhpRSlGgVS/9oFkdAsEsRnDiwS3V9lChoBmgJaA9DCIi7ehUZ805AlIaUUpRoFUuHaBZHQLBLGdCE6DJ1fZQoaAZoCWgPQwh5dY4BGddyQJSGlFKUaBVNBAFoFkdAsEsd/d69kHV9lChoBmgJaA9DCGiyf54GFnRAlIaUUpRoFUv5aBZHQLBLR2rn1Wd1fZQoaAZoCWgPQwi9i/fj9iRwQJSGlFKUaBVL3GgWR0CwS0qP0Zm7dX2UKGgGaAloD0MIcefCSO/9cECUhpRSlGgVS/hoFkdAsEtjjZL7GnV9lChoBmgJaA9DCG4164zvKXJAlIaUUpRoFUv6aBZHQLBLht0FKTV1fZQoaAZoCWgPQwik42pkV8RIQJSGlFKUaBVLp2gWR0CwS5F6JIlMdX2UKGgGaAloD0MIXaPlQI8wc0CUhpRSlGgVS+ZoFkdAsEul8v24/nV9lChoBmgJaA9DCMX/HVEhRHBAlIaUUpRoFUvQaBZHQLBLur0aqCJ1fZQoaAZoCWgPQwieeM4W0MtzQJSGlFKUaBVNAQFoFkdAsEu8VM23rnV9lChoBmgJaA9DCG7BUl0AtnFAlIaUUpRoFUu6aBZHQLBL2C7btZ51fZQoaAZoCWgPQwiXUpeMI5dyQJSGlFKUaBVL+WgWR0CwS+elXRw7dX2UKGgGaAloD0MIyk+qfbqmcUCUhpRSlGgVS8JoFkdAsEvskxASnXV9lChoBmgJaA9DCMf0hCXeg3FAlIaUUpRoFU0QAWgWR0CwS/OGO+7EdX2UKGgGaAloD0MIIJbNHBJpbkCUhpRSlGgVS+1oFkdAsEv+zyBkJHV9lChoBmgJaA9DCLa93ZLc3nFAlIaUUpRoFUvRaBZHQLBP2Wd3B551fZQoaAZoCWgPQwi+v0F79e9MQJSGlFKUaBVLdmgWR0CwT+LNnoPkdX2UKGgGaAloD0MIzLc+rHe3ckCUhpRSlGgVS+toFkdAsE/yBSUC73V9lChoBmgJaA9DCJKvBFLi+XJAlIaUUpRoFUvlaBZHQLBP98gIQe51fZQoaAZoCWgPQwiR8L2/gXJxQJSGlFKUaBVLz2gWR0CwUAQbEP1+dX2UKGgGaAloD0MI1PAtrBtlcUCUhpRSlGgVS9RoFkdAsFALtkWhy3V9lChoBmgJaA9DCBR6/Um86HNAlIaUUpRoFUvHaBZHQLBQNGwzLwF1fZQoaAZoCWgPQwi8lpAPuoVxQJSGlFKUaBVL8GgWR0CwUEDRQaaTdX2UKGgGaAloD0MIS3MrhBWMc0CUhpRSlGgVS9doFkdAsFBlLTQVsXV9lChoBmgJaA9DCLgHISAfUHNAlIaUUpRoFUvuaBZHQLBQmPvKEFp1fZQoaAZoCWgPQwiNKO0Nvr9tQJSGlFKUaBVL2WgWR0CwUJ1twaR7dX2UKGgGaAloD0MIbt3NU13ycUCUhpRSlGgVS8poFkdAsFCfAbhm5HV9lChoBmgJaA9DCAPso1MXdnFAlIaUUpRoFUvZaBZHQLBQrmYBvJl1fZQoaAZoCWgPQwgI6L6cWalyQJSGlFKUaBVL32gWR0CwUMNwJgLJdX2UKGgGaAloD0MIL6cExCTebUCUhpRSlGgVS91oFkdAsFDOKKpDNXV9lChoBmgJaA9DCG06ArjZPnJAlIaUUpRoFUvTaBZHQLBQ2mHgxah1fZQoaAZoCWgPQwgBv0aSoAlvQJSGlFKUaBVL2GgWR0CwUPZ3s5XEdX2UKGgGaAloD0MI8ghupOw0c0CUhpRSlGgVS+RoFkdAsFD3rC3w1HV9lChoBmgJaA9DCEj43t8ggm9AlIaUUpRoFUvYaBZHQLBREC2MKkV1fZQoaAZoCWgPQwio/dZOFKlvQJSGlFKUaBVL+WgWR0CwUSeAEt/XdX2UKGgGaAloD0MIqvHSTSKvc0CUhpRSlGgVS+9oFkdAsFEozvZyuXV9lChoBmgJaA9DCHUGRl5WgG5AlIaUUpRoFUvaaBZHQLBRTAWBSUF1fZQoaAZoCWgPQwhYG2MnPI1xQJSGlFKUaBVL0GgWR0CwUU2kN4JNdX2UKGgGaAloD0MI9BWkGYv8c0CUhpRSlGgVS9VoFkdAsFGCXw9aEHV9lChoBmgJaA9DCMECmDJw5EBAlIaUUpRoFUuQaBZHQLBRkJK8L8d1fZQoaAZoCWgPQwi5cvbO6FdwQJSGlFKUaBVLtmgWR0CwUZI9gWrPdX2UKGgGaAloD0MIw7ewbry0b0CUhpRSlGgVS71oFkdAsFGXXf642HV9lChoBmgJaA9DCLrzxHN2jnJAlIaUUpRoFUvaaBZHQLBRwirDIil1fZQoaAZoCWgPQwj9gt2wrXpxQJSGlFKUaBVL6mgWR0CwUeT2OAAidX2UKGgGaAloD0MIB3sTQzKIcECUhpRSlGgVS9xoFkdAsFHnb349HXV9lChoBmgJaA9DCMu9wKzQDm9AlIaUUpRoFUvraBZHQLBSELpzLfV1fZQoaAZoCWgPQwiR0QFJWCBwQJSGlFKUaBVL2WgWR0CwUhglnh86dX2UKGgGaAloD0MIpKt0d10Ac0CUhpRSlGgVS7JoFkdAsFIYEB8x9HV9lChoBmgJaA9DCO/Jw0KtESdAlIaUUpRoFUtsaBZHQLBSGV09yLh1fZQoaAZoCWgPQwj1ona/irttQJSGlFKUaBVL4mgWR0CwUiOF6AvtdX2UKGgGaAloD0MI3CqIgS5ecUCUhpRSlGgVS+JoFkdAsFI7OxB3R3V9lChoBmgJaA9DCPFjzF3L5XJAlIaUUpRoFUvPaBZHQLBSVc5Ke051fZQoaAZoCWgPQwhAEvbt5FFzQJSGlFKUaBVL62gWR0CwUlmUKRdQdX2UKGgGaAloD0MIED0pkxqQc0CUhpRSlGgVS9VoFkdAsFJehL5AQnV9lChoBmgJaA9DCOLJbmb0V1FAlIaUUpRoFUuMaBZHQLBSa21UlzF1fZQoaAZoCWgPQwjDD86njuhvQJSGlFKUaBVLyWgWR0CwUnpjH4oJdX2UKGgGaAloD0MIFt9Q+CzJcUCUhpRSlGgVS+doFkdAsFKsF5fMOnV9lChoBmgJaA9DCHdn7bbLXHFAlIaUUpRoFUvmaBZHQLBSr+98JD51fZQoaAZoCWgPQwhVpMLYQrpAQJSGlFKUaBVLq2gWR0CwUuOEVWS2dX2UKGgGaAloD0MIucK7XEQhc0CUhpRSlGgVS9poFkdAsFLqCJ40M3V9lChoBmgJaA9DCNNQo5Ck43JAlIaUUpRoFUvuaBZHQLBTBT3Zf2N1fZQoaAZoCWgPQwgmAP+Uqv9vQJSGlFKUaBVL1mgWR0CwUxHfEXLvdX2UKGgGaAloD0MIi4f3HJjAckCUhpRSlGgVS9ZoFkdAsFMZjBl+VnV9lChoBmgJaA9DCCNKe4Mvx3JAlIaUUpRoFUveaBZHQLBTMIBRyfd1fZQoaAZoCWgPQwgibHh6papTQJSGlFKUaBVLrmgWR0CwU0ELpiZwdX2UKGgGaAloD0MI3UCBd7KecECUhpRSlGgVS79oFkdAsFNDcJtzjnV9lChoBmgJaA9DCKSpnsy/3XBAlIaUUpRoFUvbaBZHQLBTSRZ2ZAp1fZQoaAZoCWgPQwhKRPgXQYZyQJSGlFKUaBVNBQFoFkdAsFNVz90ihXV9lChoBmgJaA9DCChjfJh9WHBAlIaUUpRoFUvfaBZHQLBTbivxH5J1fZQoaAZoCWgPQwhBnfLoxhlwQJSGlFKUaBVL42gWR0CwU5EAggX/dX2UKGgGaAloD0MIUwYOaOlgT0CUhpRSlGgVS41oFkdAsFOYvWYnfHV9lChoBmgJaA9DCMms3uE2P3FAlIaUUpRoFUvEaBZHQLBTnaUzKtB1fZQoaAZoCWgPQwii0R3EDnpwQJSGlFKUaBVLymgWR0CwU6hiXpnpdX2UKGgGaAloD0MI7ZxmgbZTcECUhpRSlGgVTSEBaBZHQLBTtnNgSe11fZQoaAZoCWgPQwi94qlHWhFzQJSGlFKUaBVL02gWR0CwU+SlabF1dX2UKGgGaAloD0MI4NkeveEmRkCUhpRSlGgVS5FoFkdAsFPx1RtP6HV9lChoBmgJaA9DCD/kLVf/p3FAlIaUUpRoFUvpaBZHQLBUJVpblil1fZQoaAZoCWgPQwjFxryO+HhxQJSGlFKUaBVLzWgWR0CwVEkn9ehPdX2UKGgGaAloD0MIPKQYIJE5ckCUhpRSlGgVS9toFkdAsFRVKK5083V9lChoBmgJaA9DCOYEbXL4uWBAlIaUUpRoFU3oA2gWR0CwVGCx7iQ1dX2UKGgGaAloD0MImRJJ9LIyb0CUhpRSlGgVS75oFkdAsFRiQIUrTnV9lChoBmgJaA9DCOMcdXScXXNAlIaUUpRoFUvzaBZHQLBUZNFz+3p1fZQoaAZoCWgPQwhxrmGGhshxQJSGlFKUaBVNFAFoFkdAsFR2KrJbMXV9lChoBmgJaA9DCAdEiCvnRm9AlIaUUpRoFUu+aBZHQLBUgg3Lmp51fZQoaAZoCWgPQwh3L/fJETVwQJSGlFKUaBVLzWgWR0CwVJnogV45dX2UKGgGaAloD0MIIZOMnEWbcUCUhpRSlGgVTRUBaBZHQLBUraxHG0h1fZQoaAZoCWgPQwivl6YIcM1wQJSGlFKUaBVL12gWR0CwVLS08eS0dX2UKGgGaAloD0MIKV36l2QncUCUhpRSlGgVS9FoFkdAsFS7k1dgOXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-lowlatency-x86_64-with-glibc2.29 #123-Ubuntu SMP PREEMPT Fri Apr 8 09:52:18 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
ppo-LunarLander-rc.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:62976f019ba5d6133cb8ea024c10a891b6cba2bdf959386660ce5aec6b11ecd1
3
- size 84411
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:270bd21042b36b30b975f3131aada72f4d5b682d6eefadb90234ae6da03e8953
3
+ size 41459
ppo-LunarLander-rc/data CHANGED
@@ -4,28 +4,34 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9e9e8b8310>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9e9e8b83a0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9e9e8b8430>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9e9e8b84c0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f9e9e8b8550>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f9e9e8b85e0>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9e9e8b8670>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f9e9e8b8700>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9e9e8b8790>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9e9e8b8820>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9e9e8b88b0>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f9e9e8acf60>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
23
  ":type:": "<class 'dict'>",
24
- ":serialized:": "gAWVTwAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLQEtAZXUu",
25
  "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
26
  "net_arch": [
27
- 64,
28
- 64
 
 
 
 
 
 
29
  ]
30
  },
31
  "observation_space": {
@@ -55,7 +61,7 @@
55
  "_num_timesteps_at_start": 0,
56
  "seed": null,
57
  "action_noise": null,
58
- "start_time": 1651684299.3443153,
59
  "learning_rate": 0.0003,
60
  "tensorboard_log": null,
61
  "lr_schedule": {
@@ -64,7 +70,7 @@
64
  },
65
  "_last_obs": {
66
  ":type:": "<class 'numpy.ndarray'>",
67
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZQB76DhBW8zgSFvZBgxzwa1IE8LrDcPQAAgD8AAIA/TcoFvvz9Ej0iBiQ/DQWAPRufxr0edKk+AAAAAAAAAAAzdQI99rwlujD+azWE534w3xCLOipKqLQAAIA/AACAP7PwN70IEZA96vvFPtX4AD4O+Po+86jZPQAAAAAAAAAA2lfHPYccjT9AJjA9rnQIv2tJKz72/Ca+AAAAAAAAAABmKno9o3RGPfUDoT0r5va8jN2/PuQXNL8AAAAAAAAAADNXWz18Mps/9ywBveyGEb9IuBA9HnhmvgAAAAAAAAAAgKnuPX3Njj9tws69ph2zvgWywD3Gs5y+AAAAAAAAAABNDMg93WZqP56+vL1ga+a+9ClbPlqqPb4AAAAAAAAAANbIlT6z7Fo/A8QRvC5zAL8QyP4+ITwsvgAAAAAAAAAA99UNv579pj5C+iK+anwzvv8G375uCYC+AAAAAAAAAAAA/be9tJ72PfK10j6hPZ29v3K6PpZkZT4AAAAAAAAAAC0OOb4BJbw9W0yiPmyaRr6ASto+Yg3dOwAAAAAAAAAAM5kavK7Fxrrj1mi6u62tPFX3vDpzj5W9AACAPwAAgD8NQum9jB4xPkMd8z6wE869alxbPiCvmz4AAAAAAAAAAGJIFr9aEh0/HhuQvSFHhr5vbBq+AyzPNgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
68
  },
69
  "_last_episode_starts": {
70
  ":type:": "<class 'numpy.ndarray'>",
@@ -77,7 +83,7 @@
77
  "_current_progress_remaining": -0.0027007999999999477,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
- ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyv55GrC8cUCUhpRSlIwBbJRNFwGMAXSUR0CvArSH2ys0dX2UKGgGaAloD0MI7Es2Huyfb0CUhpRSlGgVTaoBaBZHQK8DErPMSsd1fZQoaAZoCWgPQwha1v1j4XFwQJSGlFKUaBVN9QFoFkdArwQFpsXSB3V9lChoBmgJaA9DCBixTwAFSnJAlIaUUpRoFU1xAWgWR0CvBA2Hck+pdX2UKGgGaAloD0MIEywOZ/6MbkCUhpRSlGgVTQEBaBZHQK8LOtPpIMB1fZQoaAZoCWgPQwj0NctlY/9xQJSGlFKUaBVL/GgWR0CvC0XDWK/EdX2UKGgGaAloD0MImngHeJKCc0CUhpRSlGgVTRoBaBZHQK8Lb3GGVRl1fZQoaAZoCWgPQwiNXaJ6a2lwQJSGlFKUaBVNKgFoFkdArwwAhpxm03V9lChoBmgJaA9DCF0ZVBucOnBAlIaUUpRoFU0jAWgWR0CvDBot+TePdX2UKGgGaAloD0MIQpPEknJcU8CUhpRSlGgVTegDaBZHQK8MStmtheB1fZQoaAZoCWgPQwj2QCswJGFyQJSGlFKUaBVNFgFoFkdArw1zmbLEDXV9lChoBmgJaA9DCIl7LH3otW9AlIaUUpRoFU0wAWgWR0CvDYJAlfJFdX2UKGgGaAloD0MIVi3pKAeBQUCUhpRSlGgVS7doFkdArw48K1G9YnV9lChoBmgJaA9DCEZgrG/gMG9AlIaUUpRoFU0tAWgWR0CvDlREnb7CdX2UKGgGaAloD0MIFCF1O/tIcECUhpRSlGgVTWwBaBZHQK8OgWbgCOp1fZQoaAZoCWgPQwiWkuUklDBAQJSGlFKUaBVL/2gWR0CvDxkP1+RYdX2UKGgGaAloD0MIe2ZJgJqAcUCUhpRSlGgVTUIBaBZHQK8PIpVCHAR1fZQoaAZoCWgPQwgo1T4dz4pyQJSGlFKUaBVNmgFoFkdArw85m29cr3V9lChoBmgJaA9DCFRx4xbzPW5AlIaUUpRoFU2NAWgWR0CvD4l/H5rQdX2UKGgGaAloD0MIyqZc4Z06cECUhpRSlGgVS+FoFkdArw+OGVRk3HV9lChoBmgJaA9DCAn9TL0u+XFAlIaUUpRoFU0YAWgWR0CvD589W6sidX2UKGgGaAloD0MImrSpusc5bkCUhpRSlGgVS/poFkdArw/oHcDbJ3V9lChoBmgJaA9DCBqiCn8Gkm5AlIaUUpRoFU1BAWgWR0CvEAFjmSyMdX2UKGgGaAloD0MIyZBj61mIckCUhpRSlGgVTRcBaBZHQK8QYntOVPh1fZQoaAZoCWgPQwjoLR7ec1BwQJSGlFKUaBVNJAFoFkdArxGUCHRCyHV9lChoBmgJaA9DCEN1c/G38HBAlIaUUpRoFU0VAWgWR0CvEkdytFKDdX2UKGgGaAloD0MIqU4Hsp4yPsCUhpRSlGgVS8loFkdArxJQN3GGVXV9lChoBmgJaA9DCPz7jAtH/3BAlIaUUpRoFU0vAWgWR0CvEtTXrdFfdX2UKGgGaAloD0MIgSIWMWwdcECUhpRSlGgVTUsBaBZHQK8TeRJ2+wl1fZQoaAZoCWgPQwgwhJz3PyJwQJSGlFKUaBVNDQFoFkdArxOW23KB/nV9lChoBmgJaA9DCEFl/PsMe3BAlIaUUpRoFU0sAWgWR0CvE6qwyIpIdX2UKGgGaAloD0MIKNU+HY9kckCUhpRSlGgVS/loFkdArxPNvsJID3V9lChoBmgJaA9DCGTPnstU8XFAlIaUUpRoFU1dAWgWR0CvFEnYYixFdX2UKGgGaAloD0MI6/8c5st8bkCUhpRSlGgVTWYBaBZHQK8U4hzNliB1fZQoaAZoCWgPQwhE96xrtFwlwJSGlFKUaBVNhQFoFkdArxTyP+4smXV9lChoBmgJaA9DCFQZxt1gXXBAlIaUUpRoFU1gAWgWR0CvFT28yvcKdX2UKGgGaAloD0MIXJNuSyQvcUCUhpRSlGgVTU0BaBZHQK8VikSmIj51fZQoaAZoCWgPQwjh62tdqixwwJSGlFKUaBVLqGgWR0CvFlTzVc2SdX2UKGgGaAloD0MIWOVC5V8GU0CUhpRSlGgVTegDaBZHQK8WVYKYzBR1fZQoaAZoCWgPQwgpl8YvvBxKwJSGlFKUaBVL42gWR0CvFwp5u63BdX2UKGgGaAloD0MIlGsKZPZXcECUhpRSlGgVTXUBaBZHQK8Xk8mKIi11fZQoaAZoCWgPQwj3dktyQHRuQJSGlFKUaBVNdgFoFkdArxg8Iw/PgXV9lChoBmgJaA9DCJCGU+YmL3JAlIaUUpRoFU1bAWgWR0CvGE2FN+LFdX2UKGgGaAloD0MImQ8IdCaHb0CUhpRSlGgVTXoBaBZHQK8YVbnHNot1fZQoaAZoCWgPQwh0et6NhTthwJSGlFKUaBVLomgWR0CvGPWWIGhVdX2UKGgGaAloD0MIwHrctxoFc0CUhpRSlGgVTRoBaBZHQK8ZUQHzH0d1fZQoaAZoCWgPQwjQDyOEx2NvQJSGlFKUaBVNeQFoFkdArxmS+10DEHV9lChoBmgJaA9DCEetMH2v2GvAlIaUUpRoFU2KAWgWR0CvGabG3nZCdX2UKGgGaAloD0MI1SMNbmvZcECUhpRSlGgVTVYBaBZHQK8ZqsijcmB1fZQoaAZoCWgPQwgaa39ne3xTQJSGlFKUaBVN6ANoFkdArxqBkd3jdnV9lChoBmgJaA9DCGx55XrbfG9AlIaUUpRoFU18AWgWR0CvGsoVuaWpdX2UKGgGaAloD0MIgxQ8hdx5cUCUhpRSlGgVTVgBaBZHQK8i/jtG/et1fZQoaAZoCWgPQwjUDRR4JycuwJSGlFKUaBVLlWgWR0CvI69fCyhSdX2UKGgGaAloD0MIJo+n5Qc6cECUhpRSlGgVTSwBaBZHQK8j7D6WPcV1fZQoaAZoCWgPQwgNHTuoxLVoQJSGlFKUaBVN1gFoFkdAryTfFWGRFXV9lChoBmgJaA9DCHIycasglXBAlIaUUpRoFU2aAWgWR0CvJShje9BbdX2UKGgGaAloD0MInrEv2XhaVECUhpRSlGgVTegDaBZHQK8lQ9L6DXh1fZQoaAZoCWgPQwhcHJWbKCtuQJSGlFKUaBVNMAFoFkdAryVuQ2dd3XV9lChoBmgJaA9DCM5vmGiQ83BAlIaUUpRoFU0TAWgWR0CvJZZhKDkEdX2UKGgGaAloD0MIKhkAqjjRakCUhpRSlGgVTUABaBZHQK8loN7SiM51fZQoaAZoCWgPQwjSGRh5mcxyQJSGlFKUaBVNCwFoFkdArycHJo0yg3V9lChoBmgJaA9DCFLTLqbZfXBAlIaUUpRoFU2wAWgWR0CvJ0v+wTufdX2UKGgGaAloD0MIjuVd9QCKbUCUhpRSlGgVTWUBaBZHQK8ndSUC7sh1fZQoaAZoCWgPQwgzpfW3BHNpQJSGlFKUaBVN6wFoFkdAryekJx//enV9lChoBmgJaA9DCPLvMy4c9W9AlIaUUpRoFU1sAWgWR0CvJ6yFwkxAdX2UKGgGaAloD0MI3xrYKkF2bkCUhpRSlGgVTTYBaBZHQK8oDrKNhmZ1fZQoaAZoCWgPQwjh1AeS99FwQJSGlFKUaBVNGgFoFkdAryhTcbiqAHV9lChoBmgJaA9DCMTPfw/exm9AlIaUUpRoFU1WAWgWR0CvKJEWykbhdX2UKGgGaAloD0MISguXVVh2akCUhpRSlGgVTa0BaBZHQK8olNL127p1fZQoaAZoCWgPQwh07+GS48ZwQJSGlFKUaBVNLwFoFkdAryi+bgCOm3V9lChoBmgJaA9DCAbWcfxQi3BAlIaUUpRoFU0mAWgWR0CvKTnFo+OfdX2UKGgGaAloD0MITYbj+UxrcECUhpRSlGgVTSwBaBZHQK8piV8kUsZ1fZQoaAZoCWgPQwhK0jWTb7ZxQJSGlFKUaBVNQAFoFkdArymzGecx03V9lChoBmgJaA9DCAqBXOLIbVDAlIaUUpRoFUvMaBZHQK8p9rWRRuV1fZQoaAZoCWgPQwi9qUiFsWlwQJSGlFKUaBVNRwFoFkdAryn5owmE5HV9lChoBmgJaA9DCDy9UpYhukPAlIaUUpRoFUujaBZHQK8qRSQYDT11fZQoaAZoCWgPQwjFyf0OxdlsQJSGlFKUaBVNXQFoFkdArypda6jFh3V9lChoBmgJaA9DCJrMeFspJnFAlIaUUpRoFU1hAWgWR0CvKnE8JUo8dX2UKGgGaAloD0MI4e6s3XaBD0CUhpRSlGgVTQkBaBZHQK8r6Ln9vTB1fZQoaAZoCWgPQwiUTbnCu+tvQJSGlFKUaBVNUAFoFkdArywGdf9gnnV9lChoBmgJaA9DCLJHqBlS+TVAlIaUUpRoFU0ZAWgWR0CvLC00elsQdX2UKGgGaAloD0MIWOatuk6HckCUhpRSlGgVTWsBaBZHQK8sR+hGpdd1fZQoaAZoCWgPQwgMyF7v/lhtQJSGlFKUaBVNewFoFkdAryy9Wn0kGHV9lChoBmgJaA9DCNcYdEJojGxAlIaUUpRoFU1GAWgWR0CvLTHxz7uVdX2UKGgGaAloD0MIQ61p3nGePUCUhpRSlGgVS7poFkdAry1GaF23a3V9lChoBmgJaA9DCNAPI4THNXBAlIaUUpRoFU2lAWgWR0CvLeycbzbwdX2UKGgGaAloD0MIt17TgwIdcUCUhpRSlGgVTWUBaBZHQK8ublS0jTt1fZQoaAZoCWgPQwi/K4L/LWdxQJSGlFKUaBVNbAFoFkdAry7sURFqjHV9lChoBmgJaA9DCMsvgzEi7G5AlIaUUpRoFU1PAWgWR0CvLwewC8vmdX2UKGgGaAloD0MIOiLfpdQkaECUhpRSlGgVTS0CaBZHQK8vE0zCUHJ1fZQoaAZoCWgPQwgAA0GAzLZxQJSGlFKUaBVNPAFoFkdAry87vy9VWHV9lChoBmgJaA9DCN4CCYof3W9AlIaUUpRoFU1HAWgWR0CvL0Zd4VyndX2UKGgGaAloD0MIlL4Qct5nb0CUhpRSlGgVTXcBaBZHQK8vReQdS2p1fZQoaAZoCWgPQwikpfJ2hDJqQJSGlFKUaBVNsgFoFkdArzBWrlvIfnV9lChoBmgJaA9DCI7onnVNP3BAlIaUUpRoFU0eAWgWR0CvMJxK6FufdX2UKGgGaAloD0MIvRqgNBRlckCUhpRSlGgVTSUBaBZHQK8xMbTc6/91fZQoaAZoCWgPQwjJdr6fGuNoQJSGlFKUaBVNTwFoFkdArzE2sq8UVXV9lChoBmgJaA9DCMi1oWIclG9AlIaUUpRoFU1JAWgWR0CvMT9cB2fTdX2UKGgGaAloD0MIvsCsUKQyb0CUhpRSlGgVTVkBaBZHQK8xQ2Kl54Z1fZQoaAZoCWgPQwgi/fZ1YNltQJSGlFKUaBVL7GgWR0CvMWOgxrSFdWUu"
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0a0a81b3a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0a0a81b430>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0a0a81b4c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0a0a81b550>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0a0a81b5e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0a0a81b670>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0a0a81b700>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0a0a81b790>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0a0a81b820>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0a0a81b8b0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0a0a81b940>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f0a0a80ff60>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
23
  ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVYgAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZRLQGGMAnZmlF2US0BhdWF1Lg==",
25
  "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
26
  "net_arch": [
27
+ {
28
+ "pi": [
29
+ 64
30
+ ],
31
+ "vf": [
32
+ 64
33
+ ]
34
+ }
35
  ]
36
  },
37
  "observation_space": {
 
61
  "_num_timesteps_at_start": 0,
62
  "seed": null,
63
  "action_noise": null,
64
+ "start_time": 1651684751.4650345,
65
  "learning_rate": 0.0003,
66
  "tensorboard_log": null,
67
  "lr_schedule": {
 
70
  },
71
  "_last_obs": {
72
  ":type:": "<class 'numpy.ndarray'>",
73
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGu2sL7Tfqc+cAVnPnrpxr727IC+UAExPgAAAAAAAAAAzS4fvXEXUz8S1VW9nEsbv8g5Fb26FW+9AAAAAAAAAACav3e98ty6P1Oz4r6r8wA8NkUiPXlBLL0AAAAAAAAAAPM3tL3gx+c+l2fIPfxStb7Sbq+9o+gIPQAAAAAAAAAAAC6svVwTMrpEY8G67JZdttfbtDu9iOA5AAAAAAAAgD9axc499vcYP8qs+b3mHgS/lHyDPQy6tb0AAAAAAAAAAFoLVD5mDK8+gYeIvr045L7rtZY9JaljvgAAAAAAAAAAjfwEviyiqT7lVhs+9vq5vo6sP736VIk8AAAAAAAAAADi+IC+z5ZtPiemhD6qFIu+le0YviBI5T0AAAAAAAAAAIYWCT7G44Y+x3C3vqGK175c/f29VuxjvQAAAAAAAAAADa3tvUQUPz+ts+G9THIrvzJ5Eb4nZbI8AAAAAAAAAABNgb09pN+SP2qQ2D7CKQ6/Qr8vPuqhpT4AAAAAAAAAADNAdz325Ei6Rt2evV6DKj3fxiS6P/8QvgAAgD8AAIA/5rkPPXuiuLoQUgY0iZE/L30l7TjEnaWzAACAPwAAgD+z1AW+Gz+FP5IK9b6UPE+/rT80vhcBAb4AAAAAAAAAAOZImr2PAm64XeT7Nr6r9zFRYc+6FcoStgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
74
  },
75
  "_last_episode_starts": {
76
  ":type:": "<class 'numpy.ndarray'>",
 
83
  "_current_progress_remaining": -0.0027007999999999477,
84
  "ep_info_buffer": {
85
  ":type:": "<class 'collections.deque'>",
86
+ ":serialized:": "gAWVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzH7d6U6cc0CUhpRSlIwBbJRL0owBdJRHQLBKa4HX2/V1fZQoaAZoCWgPQwgTQ3IycRFvQJSGlFKUaBVLzGgWR0CwSoRVU+9rdX2UKGgGaAloD0MIfLjkuFM/U0CUhpRSlGgVS5JoFkdAsEqQAFPi1nV9lChoBmgJaA9DCEsGgCoum3BAlIaUUpRoFUvEaBZHQLBKmpc5bQl1fZQoaAZoCWgPQwhNui2RC/lvQJSGlFKUaBVLxGgWR0CwSq+qioKldX2UKGgGaAloD0MIkuo7vygIc0CUhpRSlGgVS9hoFkdAsEq+FDfFaXV9lChoBmgJaA9DCBDLZg5Js3FAlIaUUpRoFUvVaBZHQLBKw6wMYuV1fZQoaAZoCWgPQwiJKZFEL+9wQJSGlFKUaBVLzGgWR0CwSsxWxQizdX2UKGgGaAloD0MIt7OvPEilcUCUhpRSlGgVS+NoFkdAsEriA7Ppp3V9lChoBmgJaA9DCDYhrTEojHJAlIaUUpRoFUu7aBZHQLBK9rUb1h91fZQoaAZoCWgPQwgkKH6MuTZzQJSGlFKUaBVL6WgWR0CwSwA0TDfndX2UKGgGaAloD0MIopbmVkjLckCUhpRSlGgVS/9oFkdAsEsRnDiwS3V9lChoBmgJaA9DCIi7ehUZ805AlIaUUpRoFUuHaBZHQLBLGdCE6DJ1fZQoaAZoCWgPQwh5dY4BGddyQJSGlFKUaBVNBAFoFkdAsEsd/d69kHV9lChoBmgJaA9DCGiyf54GFnRAlIaUUpRoFUv5aBZHQLBLR2rn1Wd1fZQoaAZoCWgPQwi9i/fj9iRwQJSGlFKUaBVL3GgWR0CwS0qP0Zm7dX2UKGgGaAloD0MIcefCSO/9cECUhpRSlGgVS/hoFkdAsEtjjZL7GnV9lChoBmgJaA9DCG4164zvKXJAlIaUUpRoFUv6aBZHQLBLht0FKTV1fZQoaAZoCWgPQwik42pkV8RIQJSGlFKUaBVLp2gWR0CwS5F6JIlMdX2UKGgGaAloD0MIXaPlQI8wc0CUhpRSlGgVS+ZoFkdAsEul8v24/nV9lChoBmgJaA9DCMX/HVEhRHBAlIaUUpRoFUvQaBZHQLBLur0aqCJ1fZQoaAZoCWgPQwieeM4W0MtzQJSGlFKUaBVNAQFoFkdAsEu8VM23rnV9lChoBmgJaA9DCG7BUl0AtnFAlIaUUpRoFUu6aBZHQLBL2C7btZ51fZQoaAZoCWgPQwiXUpeMI5dyQJSGlFKUaBVL+WgWR0CwS+elXRw7dX2UKGgGaAloD0MIyk+qfbqmcUCUhpRSlGgVS8JoFkdAsEvskxASnXV9lChoBmgJaA9DCMf0hCXeg3FAlIaUUpRoFU0QAWgWR0CwS/OGO+7EdX2UKGgGaAloD0MIIJbNHBJpbkCUhpRSlGgVS+1oFkdAsEv+zyBkJHV9lChoBmgJaA9DCLa93ZLc3nFAlIaUUpRoFUvRaBZHQLBP2Wd3B551fZQoaAZoCWgPQwi+v0F79e9MQJSGlFKUaBVLdmgWR0CwT+LNnoPkdX2UKGgGaAloD0MIzLc+rHe3ckCUhpRSlGgVS+toFkdAsE/yBSUC73V9lChoBmgJaA9DCJKvBFLi+XJAlIaUUpRoFUvlaBZHQLBP98gIQe51fZQoaAZoCWgPQwiR8L2/gXJxQJSGlFKUaBVLz2gWR0CwUAQbEP1+dX2UKGgGaAloD0MI1PAtrBtlcUCUhpRSlGgVS9RoFkdAsFALtkWhy3V9lChoBmgJaA9DCBR6/Um86HNAlIaUUpRoFUvHaBZHQLBQNGwzLwF1fZQoaAZoCWgPQwi8lpAPuoVxQJSGlFKUaBVL8GgWR0CwUEDRQaaTdX2UKGgGaAloD0MIS3MrhBWMc0CUhpRSlGgVS9doFkdAsFBlLTQVsXV9lChoBmgJaA9DCLgHISAfUHNAlIaUUpRoFUvuaBZHQLBQmPvKEFp1fZQoaAZoCWgPQwiNKO0Nvr9tQJSGlFKUaBVL2WgWR0CwUJ1twaR7dX2UKGgGaAloD0MIbt3NU13ycUCUhpRSlGgVS8poFkdAsFCfAbhm5HV9lChoBmgJaA9DCAPso1MXdnFAlIaUUpRoFUvZaBZHQLBQrmYBvJl1fZQoaAZoCWgPQwgI6L6cWalyQJSGlFKUaBVL32gWR0CwUMNwJgLJdX2UKGgGaAloD0MIL6cExCTebUCUhpRSlGgVS91oFkdAsFDOKKpDNXV9lChoBmgJaA9DCG06ArjZPnJAlIaUUpRoFUvTaBZHQLBQ2mHgxah1fZQoaAZoCWgPQwgBv0aSoAlvQJSGlFKUaBVL2GgWR0CwUPZ3s5XEdX2UKGgGaAloD0MI8ghupOw0c0CUhpRSlGgVS+RoFkdAsFD3rC3w1HV9lChoBmgJaA9DCEj43t8ggm9AlIaUUpRoFUvYaBZHQLBREC2MKkV1fZQoaAZoCWgPQwio/dZOFKlvQJSGlFKUaBVL+WgWR0CwUSeAEt/XdX2UKGgGaAloD0MIqvHSTSKvc0CUhpRSlGgVS+9oFkdAsFEozvZyuXV9lChoBmgJaA9DCHUGRl5WgG5AlIaUUpRoFUvaaBZHQLBRTAWBSUF1fZQoaAZoCWgPQwhYG2MnPI1xQJSGlFKUaBVL0GgWR0CwUU2kN4JNdX2UKGgGaAloD0MI9BWkGYv8c0CUhpRSlGgVS9VoFkdAsFGCXw9aEHV9lChoBmgJaA9DCMECmDJw5EBAlIaUUpRoFUuQaBZHQLBRkJK8L8d1fZQoaAZoCWgPQwi5cvbO6FdwQJSGlFKUaBVLtmgWR0CwUZI9gWrPdX2UKGgGaAloD0MIw7ewbry0b0CUhpRSlGgVS71oFkdAsFGXXf642HV9lChoBmgJaA9DCLrzxHN2jnJAlIaUUpRoFUvaaBZHQLBRwirDIil1fZQoaAZoCWgPQwj9gt2wrXpxQJSGlFKUaBVL6mgWR0CwUeT2OAAidX2UKGgGaAloD0MIB3sTQzKIcECUhpRSlGgVS9xoFkdAsFHnb349HXV9lChoBmgJaA9DCMu9wKzQDm9AlIaUUpRoFUvraBZHQLBSELpzLfV1fZQoaAZoCWgPQwiR0QFJWCBwQJSGlFKUaBVL2WgWR0CwUhglnh86dX2UKGgGaAloD0MIpKt0d10Ac0CUhpRSlGgVS7JoFkdAsFIYEB8x9HV9lChoBmgJaA9DCO/Jw0KtESdAlIaUUpRoFUtsaBZHQLBSGV09yLh1fZQoaAZoCWgPQwj1ona/irttQJSGlFKUaBVL4mgWR0CwUiOF6AvtdX2UKGgGaAloD0MI3CqIgS5ecUCUhpRSlGgVS+JoFkdAsFI7OxB3R3V9lChoBmgJaA9DCPFjzF3L5XJAlIaUUpRoFUvPaBZHQLBSVc5Ke051fZQoaAZoCWgPQwhAEvbt5FFzQJSGlFKUaBVL62gWR0CwUlmUKRdQdX2UKGgGaAloD0MIED0pkxqQc0CUhpRSlGgVS9VoFkdAsFJehL5AQnV9lChoBmgJaA9DCOLJbmb0V1FAlIaUUpRoFUuMaBZHQLBSa21UlzF1fZQoaAZoCWgPQwjDD86njuhvQJSGlFKUaBVLyWgWR0CwUnpjH4oJdX2UKGgGaAloD0MIFt9Q+CzJcUCUhpRSlGgVS+doFkdAsFKsF5fMOnV9lChoBmgJaA9DCHdn7bbLXHFAlIaUUpRoFUvmaBZHQLBSr+98JD51fZQoaAZoCWgPQwhVpMLYQrpAQJSGlFKUaBVLq2gWR0CwUuOEVWS2dX2UKGgGaAloD0MIucK7XEQhc0CUhpRSlGgVS9poFkdAsFLqCJ40M3V9lChoBmgJaA9DCNNQo5Ck43JAlIaUUpRoFUvuaBZHQLBTBT3Zf2N1fZQoaAZoCWgPQwgmAP+Uqv9vQJSGlFKUaBVL1mgWR0CwUxHfEXLvdX2UKGgGaAloD0MIi4f3HJjAckCUhpRSlGgVS9ZoFkdAsFMZjBl+VnV9lChoBmgJaA9DCCNKe4Mvx3JAlIaUUpRoFUveaBZHQLBTMIBRyfd1fZQoaAZoCWgPQwgibHh6papTQJSGlFKUaBVLrmgWR0CwU0ELpiZwdX2UKGgGaAloD0MI3UCBd7KecECUhpRSlGgVS79oFkdAsFNDcJtzjnV9lChoBmgJaA9DCKSpnsy/3XBAlIaUUpRoFUvbaBZHQLBTSRZ2ZAp1fZQoaAZoCWgPQwhKRPgXQYZyQJSGlFKUaBVNBQFoFkdAsFNVz90ihXV9lChoBmgJaA9DCChjfJh9WHBAlIaUUpRoFUvfaBZHQLBTbivxH5J1fZQoaAZoCWgPQwhBnfLoxhlwQJSGlFKUaBVL42gWR0CwU5EAggX/dX2UKGgGaAloD0MIUwYOaOlgT0CUhpRSlGgVS41oFkdAsFOYvWYnfHV9lChoBmgJaA9DCMms3uE2P3FAlIaUUpRoFUvEaBZHQLBTnaUzKtB1fZQoaAZoCWgPQwii0R3EDnpwQJSGlFKUaBVLymgWR0CwU6hiXpnpdX2UKGgGaAloD0MI7ZxmgbZTcECUhpRSlGgVTSEBaBZHQLBTtnNgSe11fZQoaAZoCWgPQwi94qlHWhFzQJSGlFKUaBVL02gWR0CwU+SlabF1dX2UKGgGaAloD0MI4NkeveEmRkCUhpRSlGgVS5FoFkdAsFPx1RtP6HV9lChoBmgJaA9DCD/kLVf/p3FAlIaUUpRoFUvpaBZHQLBUJVpblil1fZQoaAZoCWgPQwjFxryO+HhxQJSGlFKUaBVLzWgWR0CwVEkn9ehPdX2UKGgGaAloD0MIPKQYIJE5ckCUhpRSlGgVS9toFkdAsFRVKK5083V9lChoBmgJaA9DCOYEbXL4uWBAlIaUUpRoFU3oA2gWR0CwVGCx7iQ1dX2UKGgGaAloD0MImRJJ9LIyb0CUhpRSlGgVS75oFkdAsFRiQIUrTnV9lChoBmgJaA9DCOMcdXScXXNAlIaUUpRoFUvzaBZHQLBUZNFz+3p1fZQoaAZoCWgPQwhxrmGGhshxQJSGlFKUaBVNFAFoFkdAsFR2KrJbMXV9lChoBmgJaA9DCAdEiCvnRm9AlIaUUpRoFUu+aBZHQLBUgg3Lmp51fZQoaAZoCWgPQwh3L/fJETVwQJSGlFKUaBVLzWgWR0CwVJnogV45dX2UKGgGaAloD0MIIZOMnEWbcUCUhpRSlGgVTRUBaBZHQLBUraxHG0h1fZQoaAZoCWgPQwivl6YIcM1wQJSGlFKUaBVL12gWR0CwVLS08eS0dX2UKGgGaAloD0MIKV36l2QncUCUhpRSlGgVS9FoFkdAsFS7k1dgOXVlLg=="
87
  },
88
  "ep_success_buffer": {
89
  ":type:": "<class 'collections.deque'>",
ppo-LunarLander-rc/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:020619c20604d907d4d87d93468353110be350a760660d423d5326f1b159dbce
3
- size 44853
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e41ab81fc84773cc8b123cf835582db2e8b5904f27d57c19fae106e19c0956a7
3
+ size 16181
ppo-LunarLander-rc/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5c1747bdb5d9e46e512ca5ecc11d2d481432fa9fd494ef9597d855351a9cf003
3
- size 23055
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14d56b43d309d0a8a5a0ac4d4a25ddaee5f2ca6a5f8e95736aa5380a789318d1
3
+ size 8719
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e0ba6858217e953606ffc33ca6f375df02995446c64c37edb06ee69449bf283c
3
- size 252957
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d2c08839f0c080548c8324a0e5f5f60e7a8b12649d578cb58932b51e44aca07
3
+ size 186066
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -19.34708520305576, "std_reward": 20.09428371325277, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T02:19:02.365466"}
 
1
+ {"mean_reward": 277.97566453407774, "std_reward": 14.817633418408276, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T02:29:09.449364"}