File size: 2,355 Bytes
f2f926a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a5e4cc
 
 
 
 
 
 
 
 
 
 
f2f926a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-tiny-final
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-tiny-final

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0714
- Wer: 6.3947

## Model description

Step	Training Loss	Validation Loss	Wer
1000	0.727300	0.734777	71.347666
2000	0.392000	0.430395	52.059163
3000	0.317100	0.305939	39.781162
4000	0.206400	0.225029	30.785726
5000	0.152800	0.169434	23.076923
6000	0.119000	0.130408	16.517293
7000	0.082300	0.102279	11.755650
8000	0.079600	0.085155	8.511574
9000	0.051400	0.075068	7.048991
10000	0.045000	0.071429	6.394678

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 10000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Wer     |
|:-------------:|:-------:|:-----:|:---------------:|:-------:|
| 0.7273        | 1.6051  | 1000  | 0.7348          | 71.3477 |
| 0.392         | 3.2103  | 2000  | 0.4304          | 52.0592 |
| 0.3171        | 4.8154  | 3000  | 0.3059          | 39.7812 |
| 0.2064        | 6.4205  | 4000  | 0.2250          | 30.7857 |
| 0.1528        | 8.0257  | 5000  | 0.1694          | 23.0769 |
| 0.119         | 9.6308  | 6000  | 0.1304          | 16.5173 |
| 0.0823        | 11.2360 | 7000  | 0.1023          | 11.7556 |
| 0.0796        | 12.8411 | 8000  | 0.0852          | 8.5116  |
| 0.0514        | 14.4462 | 9000  | 0.0751          | 7.0490  |
| 0.045         | 16.0514 | 10000 | 0.0714          | 6.3947  |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.0
- Datasets 2.19.1
- Tokenizers 0.19.1