|
|
|
|
|
|
|
from copy import deepcopy |
|
from torch.nn.init import xavier_uniform_ |
|
import torch.nn.functional as F |
|
from torch.nn import Parameter |
|
from torch.nn.init import normal_ |
|
import torch.utils.checkpoint |
|
from torch import Tensor, device |
|
from .G2PTL_utils import * |
|
from transformers.modeling_utils import ModuleUtilsMixin |
|
from .graphormer import Graphormer3D |
|
import pickle |
|
from transformers.modeling_outputs import ModelOutput |
|
import numpy as np |
|
|
|
|
|
|
|
from .htc_loss import HTCLoss |
|
from transformers.utils.hub import cached_file |
|
remap_code_2_chn_file_path = cached_file( |
|
'JunhongLou/G2PTL', |
|
'remap_code_2_chn.pkl', |
|
) |
|
|
|
class G2PTLEmbedding(nn.Module): |
|
"""Construct the embeddings from word, position and token_type embeddings.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) |
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) |
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) |
|
self.ner_type_embeddings = nn.Embedding(10, config.hidden_size) |
|
self.use_task_id = config.use_task_id |
|
if config.use_task_id: |
|
self.task_type_embeddings = nn.Embedding(config.task_type_vocab_size, config.hidden_size) |
|
|
|
|
|
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") |
|
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) |
|
self.register_buffer("token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), |
|
persistent=False) |
|
self._reset_parameters() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
ner_type_ids: Optional[torch.LongTensor] = None, |
|
task_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
past_key_values_length: int = 0, |
|
) -> torch.Tensor: |
|
if input_ids is not None: |
|
input_shape = input_ids.size() |
|
else: |
|
input_shape = inputs_embeds.size()[:-1] |
|
|
|
seq_length = input_shape[1] |
|
|
|
if position_ids is None: |
|
position_ids = self.position_ids[:, past_key_values_length: seq_length + past_key_values_length] |
|
|
|
|
|
|
|
|
|
if token_type_ids is None: |
|
if hasattr(self, "token_type_ids"): |
|
buffered_token_type_ids = self.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
if ner_type_ids is not None: |
|
ner_type_embeddings = self.ner_type_embeddings(ner_type_ids) |
|
|
|
embeddings = inputs_embeds + token_type_embeddings + ner_type_embeddings |
|
else: |
|
embeddings = inputs_embeds + token_type_embeddings |
|
if self.position_embedding_type == "absolute": |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings += position_embeddings |
|
|
|
if self.use_task_id: |
|
if task_type_ids is None: |
|
task_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) |
|
task_type_embeddings = self.task_type_embeddings(task_type_ids) |
|
embeddings += task_type_embeddings |
|
|
|
embeddings = self.LayerNorm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
def _reset_parameters(self): |
|
for p in self.parameters(): |
|
if p.dim() > 1: |
|
normal_(p, mean=0.0, std=0.02) |
|
|
|
def save_weights(self, path): |
|
torch.save(self.state_dict(), path) |
|
|
|
def load_weights(self, path): |
|
self.load_state_dict(torch.load(path)) |
|
|
|
|
|
|
|
class TransformerSelfAttention(nn.Module): |
|
def __init__(self, config, position_embedding_type=None): |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): |
|
raise ValueError( |
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " |
|
f"heads ({config.num_attention_heads})" |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
self.position_embedding_type = position_embedding_type or getattr( |
|
config, "position_embedding_type", "absolute" |
|
) |
|
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) |
|
|
|
self.is_decoder = config.is_decoder |
|
|
|
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
|
|
|
|
|
|
is_cross_attention = encoder_hidden_states is not None |
|
|
|
if is_cross_attention and past_key_value is not None: |
|
|
|
key_layer = past_key_value[0] |
|
value_layer = past_key_value[1] |
|
attention_mask = encoder_attention_mask |
|
elif is_cross_attention: |
|
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) |
|
attention_mask = encoder_attention_mask |
|
elif past_key_value is not None: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) |
|
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) |
|
else: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
use_cache = past_key_value is not None |
|
if self.is_decoder: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_key_value = (key_layer, value_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": |
|
query_length, key_length = query_layer.shape[2], key_layer.shape[2] |
|
if use_cache: |
|
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( |
|
-1, 1 |
|
) |
|
else: |
|
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) |
|
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) |
|
distance = position_ids_l - position_ids_r |
|
|
|
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) |
|
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) |
|
|
|
if self.position_embedding_type == "relative_key": |
|
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) |
|
attention_scores = attention_scores + relative_position_scores |
|
elif self.position_embedding_type == "relative_key_query": |
|
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) |
|
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) |
|
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key |
|
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
if attention_mask is not None: |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(new_context_layer_shape) |
|
|
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|
|
|
if self.is_decoder: |
|
outputs = outputs + (past_key_value,) |
|
return outputs |
|
|
|
|
|
|
|
class TransformerSelfOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
|
|
class TransformerAttention(nn.Module): |
|
def __init__(self, config, position_embedding_type=None): |
|
super().__init__() |
|
self.self = TransformerSelfAttention(config, position_embedding_type=position_embedding_type) |
|
self.output = TransformerSelfOutput(config) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads |
|
) |
|
|
|
|
|
self.self.query = prune_linear_layer(self.self.query, index) |
|
self.self.key = prune_linear_layer(self.self.key, index) |
|
self.self.value = prune_linear_layer(self.self.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) |
|
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
self_outputs = self.self( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
outputs = (attention_output,) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
class TransformerIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class TransformerOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
|
|
class TransformerLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = TransformerAttention(config) |
|
self.is_decoder = config.is_decoder |
|
self.add_cross_attention = config.add_cross_attention |
|
if self.add_cross_attention: |
|
if not self.is_decoder: |
|
raise ValueError(f"{self} should be used as a decoder model if cross attention is added") |
|
self.crossattention = TransformerAttention(config, position_embedding_type="absolute") |
|
self.intermediate = TransformerIntermediate(config) |
|
self.output = TransformerOutput(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
|
|
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None |
|
self_attention_outputs = self.attention( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
output_attentions=output_attentions, |
|
past_key_value=self_attn_past_key_value, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
|
|
|
|
if self.is_decoder: |
|
outputs = self_attention_outputs[1:-1] |
|
present_key_value = self_attention_outputs[-1] |
|
else: |
|
outputs = self_attention_outputs[1:] |
|
|
|
cross_attn_present_key_value = None |
|
if self.is_decoder and encoder_hidden_states is not None: |
|
if not hasattr(self, "crossattention"): |
|
raise ValueError( |
|
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" |
|
" by setting `config.add_cross_attention=True`" |
|
) |
|
|
|
|
|
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None |
|
cross_attention_outputs = self.crossattention( |
|
attention_output, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
cross_attn_past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = cross_attention_outputs[0] |
|
outputs = outputs + cross_attention_outputs[1:-1] |
|
|
|
|
|
cross_attn_present_key_value = cross_attention_outputs[-1] |
|
present_key_value = present_key_value + cross_attn_present_key_value |
|
|
|
layer_output = apply_chunking_to_forward( |
|
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output |
|
) |
|
outputs = (layer_output,) + outputs |
|
|
|
|
|
if self.is_decoder: |
|
outputs = outputs + (present_key_value,) |
|
|
|
return outputs |
|
|
|
def feed_forward_chunk(self, attention_output): |
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
class TransformerEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList([TransformerLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = False, |
|
output_hidden_states: Optional[bool] = False, |
|
return_dict: Optional[bool] = True, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None |
|
|
|
next_decoder_cache = () if use_cache else None |
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
past_key_value = past_key_values[i] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
if use_cache: |
|
logger.warning( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, past_key_value, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[-1],) |
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
if self.config.add_cross_attention: |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
next_decoder_cache, |
|
all_hidden_states, |
|
all_self_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_decoder_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
|
|
class Pooler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
class TransformerModel(nn.Module): |
|
""" |
|
""" |
|
|
|
def __init__(self, config, add_pooling_layer=True): |
|
super().__init__() |
|
self.config = config |
|
self.encoder = TransformerEncoder(config) |
|
self.pooler = Pooler(config) if add_pooling_layer else None |
|
|
|
self._reset_parameters() |
|
|
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
def forward( |
|
self, |
|
h_input, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
task_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: |
|
r""" |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if self.config.is_decoder: |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
else: |
|
use_cache = False |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
batch_size, seq_length = input_shape |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
|
|
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) |
|
|
|
if token_type_ids is None: |
|
if hasattr(self.embeddings, "token_type_ids"): |
|
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) |
|
|
|
|
|
|
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) |
|
|
|
|
|
|
|
if self.config.is_decoder and encoder_hidden_states is not None: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
encoder_outputs = self.encoder( |
|
h_input, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
|
|
if not return_dict: |
|
return (sequence_output, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
past_key_values=encoder_outputs.past_key_values, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
cross_attentions=encoder_outputs.cross_attentions, |
|
) |
|
|
|
def get_extended_attention_mask( |
|
self, attention_mask: Tensor, input_shape: Tuple[int], device: device = None, dtype: torch.float = None |
|
) -> Tensor: |
|
""" |
|
Makes broadcastable attention and causal masks so that future and masked tokens are ignored. |
|
|
|
Arguments: |
|
attention_mask (`torch.Tensor`): |
|
Mask with ones indicating tokens to attend to, zeros for tokens to ignore. |
|
input_shape (`Tuple[int]`): |
|
The shape of the input to the model. |
|
|
|
Returns: |
|
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. |
|
""" |
|
if dtype is None: |
|
dtype = torch.float32 |
|
|
|
if not (attention_mask.dim() == 2 and self.config.is_decoder): |
|
|
|
if device is not None: |
|
warnings.warn( |
|
"The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
|
|
|
|
if attention_mask.dim() == 3: |
|
extended_attention_mask = attention_mask[:, None, :, :] |
|
elif attention_mask.dim() == 2: |
|
|
|
|
|
|
|
if self.config.is_decoder: |
|
extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder( |
|
input_shape, attention_mask, device |
|
) |
|
else: |
|
extended_attention_mask = attention_mask[:, None, None, :] |
|
else: |
|
raise ValueError( |
|
f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
extended_attention_mask = extended_attention_mask.to(dtype=dtype) |
|
extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min |
|
return extended_attention_mask |
|
|
|
def get_head_mask( |
|
self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False |
|
) -> Tensor: |
|
""" |
|
Prepare the head mask if needed. |
|
|
|
Args: |
|
head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*): |
|
The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard). |
|
num_hidden_layers (`int`): |
|
The number of hidden layers in the model. |
|
is_attention_chunked: (`bool`, *optional*, defaults to `False`): |
|
Whether or not the attentions scores are computed by chunks or not. |
|
|
|
Returns: |
|
`torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with |
|
`[None]` for each layer. |
|
""" |
|
if head_mask is not None: |
|
head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers) |
|
if is_attention_chunked is True: |
|
head_mask = head_mask.unsqueeze(-1) |
|
else: |
|
head_mask = [None] * num_hidden_layers |
|
|
|
return head_mask |
|
|
|
def _reset_parameters(self): |
|
r"""Initiate parameters in the transformer model.""" |
|
for p in self.parameters(): |
|
if p.dim() > 1: |
|
normal_(p, mean=0.0, std=self.config.initializer_range) |
|
|
|
def save_weights(self, path): |
|
torch.save(self.state_dict(), path) |
|
|
|
def load_weights(self, path): |
|
self.load_state_dict(torch.load(path)) |
|
|
|
@dataclass |
|
|
|
@dataclass |
|
class G2PTLMaskedLMOutput(ModelOutput): |
|
""" |
|
Base class for masked language models outputs. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Masked language modeling (MLM) loss. |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
gc_layer_out: Optional[torch.FloatTensor] = None |
|
final_pooler_output: Optional[torch.FloatTensor] = None |
|
final_hidden_state: Optional[torch.FloatTensor] = None |
|
last_hidden_state: Optional[torch.FloatTensor] = None |
|
htc_layer_out: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
from transformers.activations import ACT2FN |
|
|
|
class TransformerPredictionHeadTransform(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
if isinstance(config.hidden_act, str): |
|
self.transform_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.transform_act_fn = config.hidden_act |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.transform_act_fn(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class TransformerLMPredictionHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.transform = TransformerPredictionHeadTransform(config) |
|
|
|
|
|
|
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) |
|
|
|
|
|
self.decoder.bias = self.bias |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.transform(hidden_states) |
|
hidden_states = self.decoder(hidden_states) |
|
return hidden_states |
|
|
|
|
|
|
|
class TransformerOnlyMLMHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.predictions = TransformerLMPredictionHead(config) |
|
|
|
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: |
|
prediction_scores = self.predictions(sequence_output) |
|
return prediction_scores |
|
|
|
class G2PTL(PreTrainedModel): |
|
def __init__(self, config, return_last_hidden_state=False): |
|
super(G2PTL, self).__init__(config) |
|
|
|
self.config = deepcopy(config) |
|
self.return_last_hidden_state = return_last_hidden_state |
|
self.dropout = nn.Dropout(self.config.hidden_dropout_prob) |
|
|
|
self.embedding = G2PTLEmbedding(self.config) |
|
|
|
self.G2PTL_config = deepcopy(config) |
|
self.transformer_model = TransformerModel(self.G2PTL_config) |
|
|
|
self.graphormer = Graphormer3D() |
|
|
|
self.encoder_config = deepcopy(config) |
|
self.encoder_config.num_hidden_layers = 1 |
|
self.encoder = TransformerModel(self.encoder_config) |
|
self.encoder_out_dim = self.encoder_config.hidden_size |
|
|
|
self.gc_trans = nn.Linear(self.encoder_out_dim, 16 * 33, bias=True) |
|
|
|
self.cls = TransformerOnlyMLMHead(self.G2PTL_config) |
|
|
|
self.htc_trans = nn.Linear(self.encoder_out_dim, 5 * 100, bias=True) |
|
|
|
self.down_hidden_dim = 512 |
|
self.down_kernel_num = 128 |
|
self.alias_trans = nn.Linear(self.encoder_out_dim, self.down_hidden_dim, bias=True) |
|
self.alias_trans2 = torch.nn.Conv2d(1, self.down_kernel_num, (2, self.down_hidden_dim), stride=1, bias=True) |
|
self.alias_layer = nn.Linear(self.down_kernel_num * 5, 2 * 5, bias=True) |
|
|
|
self.aoi_trans = nn.Linear(self.encoder_out_dim, self.down_hidden_dim, bias=True) |
|
self.aoi_trans2 = torch.nn.Conv2d(1, self.down_kernel_num, (2, self.down_hidden_dim), stride=1, bias=True) |
|
self.aoi_layer = nn.Linear(self.down_kernel_num * 5, 2 * 5, bias=True) |
|
|
|
self._reset_parameters() |
|
|
|
def forward(self, |
|
input_ids, |
|
attention_mask : Optional[torch.Tensor] = None, |
|
token_type_ids : Optional[torch.Tensor] = None, |
|
node_position_ids: Optional[torch.Tensor] = None, |
|
spatial_pos: Optional[torch.Tensor] = None, |
|
in_degree: Optional[torch.Tensor] = None, |
|
out_degree: Optional[torch.Tensor] = None, |
|
edge_type_matrix: Optional[torch.Tensor] = None, |
|
edge_input : Optional[torch.Tensor] = None, |
|
prov_city_mask: Optional[torch.Tensor] = None, |
|
sequence_len : Optional[int] = 1, |
|
labels: Optional[torch.Tensor] = None |
|
): |
|
""" |
|
:param input_ids: [sequence_len * batch_size, src_len] |
|
:param attention_mask: [sequence_len * batch_size, src_len] |
|
:param token_type_ids: [sequence_len * batch_size, src_len] |
|
:param sequence_len: int |
|
:param labels: |
|
:param is_eval: bool |
|
:return: |
|
""" |
|
|
|
batch_size_input = int(input_ids.shape[0] / sequence_len) |
|
|
|
|
|
if spatial_pos is None: |
|
|
|
spatial_pos = torch.LongTensor(np.zeros((batch_size_input, 1, 1), dtype=np.int64)).to(self.device) |
|
if in_degree is None: |
|
|
|
in_degree = torch.LongTensor(np.ones((batch_size_input, 1), dtype=np.int64)).to(self.device) |
|
if out_degree is None: |
|
|
|
out_degree = torch.LongTensor(np.ones((batch_size_input, 1), dtype=np.int64)).to(self.device) |
|
if edge_type_matrix is None: |
|
|
|
edge_type_matrix = torch.LongTensor(8*np.ones((batch_size_input, 1, 1), dtype=np.int64)).to(self.device) |
|
if edge_input is None: |
|
|
|
edge_input = torch.LongTensor(8*np.ones((batch_size_input, 1, 1, 1), dtype=np.int64)).to(self.device) |
|
if node_position_ids is None: |
|
|
|
node_position_ids = torch.tensor(np.ones((batch_size_input, 1), dtype=np.int64)).to(self.device) |
|
|
|
embedding_output = self.embedding(input_ids=input_ids, token_type_ids=token_type_ids) |
|
|
|
transformer_predictions = self.transformer_model(embedding_output, |
|
input_ids=input_ids, |
|
token_type_ids=token_type_ids, |
|
attention_mask=attention_mask) |
|
last_hidden_state = transformer_predictions[0].contiguous().view(batch_size_input, sequence_len, -1, |
|
self.encoder_out_dim) |
|
pooler_output = transformer_predictions[1].contiguous().view(batch_size_input, sequence_len, self.encoder_out_dim) |
|
|
|
h_ = self.graphormer(pooler_output, spatial_pos, in_degree, out_degree, edge_type_matrix, edge_input, node_position_ids) |
|
h_ = h_.unsqueeze(2) |
|
new_hidden_state = torch.cat((h_, last_hidden_state[:, :, 1:, :]), dim=2) |
|
new_hidden_state = new_hidden_state.contiguous().view(batch_size_input * sequence_len, -1, self.encoder_out_dim) |
|
encoder_outputs = self.encoder(new_hidden_state, |
|
input_ids=input_ids, |
|
token_type_ids=token_type_ids, |
|
attention_mask=attention_mask) |
|
final_hidden_state = encoder_outputs[0] |
|
final_pooler_output = encoder_outputs[1].contiguous().view(batch_size_input, sequence_len, self.encoder_out_dim) |
|
prediction_scores = self.cls(final_hidden_state) |
|
|
|
gc_layer_out = self.gc_trans(final_pooler_output) |
|
gc_layer_out = gc_layer_out.contiguous().view(-1, 16) |
|
|
|
htc_layer_out = self.htc_trans(final_pooler_output) |
|
htc_layer_out = htc_layer_out.contiguous().view(-1, 100) |
|
|
|
masked_lm_loss = None |
|
|
|
|
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
if self.return_last_hidden_state: |
|
return final_pooler_output, pooler_output |
|
|
|
return G2PTLMaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=prediction_scores, |
|
hidden_states=final_hidden_state, |
|
attentions=encoder_outputs.attentions, |
|
gc_layer_out = gc_layer_out, |
|
final_pooler_output = final_pooler_output, |
|
final_hidden_state = final_hidden_state, |
|
last_hidden_state = last_hidden_state, |
|
htc_layer_out = htc_layer_out |
|
) |
|
|
|
def get_htc_code(self, htc_layer_out): |
|
htc_loss_fct = HTCLoss(device=self.device, reduction='mean') |
|
htc_pred = htc_loss_fct.get_htc_code(htc_layer_out) |
|
return htc_pred |
|
|
|
def decode_htc_code_2_chn(self, htc_pred): |
|
with open(remap_code_2_chn_file_path, 'rb') as fr: |
|
remap_code_2_chn = pickle.loads(fr.read()) |
|
htc_pred = np.array(htc_pred).reshape(-1, 5) |
|
htc_res = [] |
|
for arr in htc_pred: |
|
htc_res.append(remap_code_2_chn['{:02d}{:02d}{:02d}{:01d}{:02d}'.format(arr[0], arr[1], arr[2], arr[3], arr[4])]) |
|
return htc_res |
|
|
|
def _reset_parameters(self): |
|
for p in self.parameters(): |
|
if p.dim() > 1: |
|
xavier_uniform_(p) |
|
|
|
def save_weights(self, path): |
|
torch.save(self.state_dict(), path) |
|
|
|
def load_weights(self, path): |
|
self.load_state_dict(torch.load(path, map_location=torch.device('cpu')), False) |
|
|
|
|