File size: 5,737 Bytes
db26c81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import json

from greedrl import Problem
from greedrl.feature import *
from greedrl.variable import *

features = [continuous_feature('worker_weight_limit'),
            continuous_feature('worker_ready_time'),
            continuous_feature('worker_due_time'),
            continuous_feature('worker_basic_cost'),
            continuous_feature('worker_distance_cost'),
            continuous_feature('task_demand'),
            continuous_feature('task_weight'),
            continuous_feature('task_ready_time'),
            continuous_feature('task_due_time'),
            continuous_feature('task_service_time'),
            continuous_feature('distance_matrix')]

variables = [task_demand_now('task_demand_now', feature='task_demand'),
             task_demand_now('task_demand_this', feature='task_demand', only_this=True),
             feature_variable('task_weight'),
             feature_variable('task_due_time'),
             feature_variable('task_ready_time'),
             feature_variable('task_service_time'),
             worker_variable('worker_weight_limit'),
             worker_variable('worker_due_time'),
             worker_variable('worker_basic_cost'),
             worker_variable('worker_distance_cost'),
             worker_used_resource('worker_used_weight', task_require='task_weight'),
             worker_used_resource('worker_used_time', 'distance_matrix', 'task_service_time', 'task_ready_time',
                                  'worker_ready_time'),
             edge_variable('distance_last_to_this', feature='distance_matrix', last_to_this=True),
             edge_variable('distance_this_to_task', feature='distance_matrix', this_to_task=True),
             edge_variable('distance_task_to_end', feature='distance_matrix', task_to_end=True)]


class Constraint:

    def do_task(self):
        return self.task_demand_this

    def mask_task(self):
        # 已经完成的任务
        mask = self.task_demand_now <= 0
        # 车辆容量限制
        worker_weight_limit = self.worker_weight_limit - self.worker_used_weight
        mask |= self.task_demand_now * self.task_weight > worker_weight_limit[:, None]

        worker_used_time = self.worker_used_time[:, None] + self.distance_this_to_task
        mask |= worker_used_time > self.task_due_time

        worker_used_time = torch.max(worker_used_time, self.task_ready_time)
        worker_used_time += self.task_service_time
        worker_used_time += self.distance_task_to_end
        mask |= worker_used_time > self.worker_due_time[:, None]

        return mask

    def finished(self):
        return torch.all(self.task_demand_now <= 0, 1)


class Objective:

    def step_worker_start(self):
        return self.worker_basic_cost

    def step_worker_end(self):
        return self.distance_last_to_this * self.worker_distance_cost

    def step_task(self):
        return self.distance_last_to_this * self.worker_distance_cost


def make_problem_from_json(data):
    if isinstance(data, str):
        data = json.loads(data)

    problem = Problem()
    problem.worker_weight_limit = torch.tensor(data['worker_weight_limit'], dtype=torch.float32)
    problem.worker_ready_time = torch.tensor(data['worker_ready_time'], dtype=torch.float32)
    problem.worker_due_time = torch.tensor(data['worker_due_time'], dtype=torch.float32)
    problem.worker_basic_cost = torch.tensor(data['worker_basic_cost'], dtype=torch.float32)
    problem.worker_distance_cost = torch.tensor(data['worker_distance_cost'], dtype=torch.float32)

    problem.task_demand = torch.tensor(data['task_demand'], dtype=torch.int32)
    problem.task_weight = torch.tensor(data['task_weight'], dtype=torch.float32)
    problem.task_ready_time = torch.tensor(data['task_ready_time'], dtype=torch.float32)
    problem.task_due_time = torch.tensor(data['task_due_time'], dtype=torch.float32)
    problem.task_service_time = torch.tensor(data['task_service_time'], dtype=torch.float32)

    problem.distance_matrix = torch.tensor(data['distance_matrix'], dtype=torch.float32);

    problem.features = features
    problem.variables = variables
    problem.constraint = Constraint
    problem.objective = Objective

    return problem


def make_problem(batch_count, batch_size=1, task_count=100):
    assert batch_size == 1

    NT = task_count
    problem_list = []
    for i in range(batch_count):
        problem = Problem()
        problem.id = i

        problem.worker_weight_limit = torch.tensor([50], dtype=torch.float32)
        problem.worker_ready_time = torch.tensor([0], dtype=torch.float32)
        problem.worker_due_time = torch.tensor([1000000], dtype=torch.float32)
        problem.worker_basic_cost = torch.tensor([100], dtype=torch.float32)
        problem.worker_distance_cost = torch.tensor([1], dtype=torch.float32)

        problem.task_demand = torch.randint(1, 10, (NT,), dtype=torch.int32)
        problem.task_weight = torch.ones(NT, dtype=torch.float32)
        problem.task_ready_time = torch.zeros(NT, dtype=torch.float32)
        problem.task_due_time = torch.randint(10000, 100000, (NT,), dtype=torch.float32)
        problem.task_service_time = torch.zeros(NT, dtype=torch.float32)

        loc = torch.rand(NT + 1, 2, dtype=torch.float32)
        problem.distance_matrix = torch.norm(loc[:, None, :] - loc[None, :, :], dim=2) * 1000
        problem_list.append(problem)

        problem.features = features
        problem.variables = variables
        problem.constraint = Constraint
        problem.objective = Objective

    return problem_list


if __name__ == '__main__':
    import sys
    import os.path as osp
    sys.path.append(osp.join(osp.dirname(__file__), '../'))
    import runner

    runner.run(make_problem)