File size: 16,432 Bytes
db26c81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
import torch
import functools

from .utils import repeat


class VarMeta(object):
    def __init__(self, clazz, **kwargs):
        self.clazz = clazz
        self._kwargs = kwargs
        for k, v in kwargs.items():
            setattr(self, k, v)

    def __call__(self, problem, batch_size, sample_num):
        kwargs = self._kwargs.copy()
        kwargs['problem'] = problem.feats
        kwargs['batch_size'] = batch_size
        kwargs['sample_num'] = sample_num
        kwargs['worker_num'] = problem.worker_num
        kwargs['task_num'] = problem.task_num
        return self.clazz(**kwargs)


def attribute_variable(name, attribute=None):
    return VarMeta(AttributeVariable, name=name, attribute=attribute)


class AttributeVariable:
    def __init__(self, name, attribute, problem, batch_size, sample_num, worker_num, task_num):
        if attribute is None:
            attribute = name;

        self.name = name
        self.value = problem[attribute]


def feature_variable(name, feature=None):
    return VarMeta(FeatureVariable, name=name, feature=feature)


class FeatureVariable:
    def __init__(self, name, feature, problem, batch_size, sample_num, worker_num, task_num):
        if feature is None:
            feature = name

        assert feature == 'id' or feature.startswith("worker_") or feature.startswith("task_")

        self.name = name
        self.feature = problem[feature]
        self.value = repeat(self.feature, sample_num)


def task_variable(name, feature=None):
    return VarMeta(TaskVariable, name=name, feature=feature)


class TaskVariable:
    def __init__(self, name, feature, problem, batch_size, sample_num, worker_num, task_num):
        if feature is None:
            feature = name

        assert feature.startswith("task_")

        self.name = name
        self.feature = problem[feature]

        size = list(self.feature.size())
        size[0] = batch_size
        del size[1]
        self.value = self.feature.new_zeros(size)

    def step_task(self, b_index, p_index, t_index):
        self.value[b_index] = self.feature[p_index, t_index]


def worker_variable(name, feature=None):
    return VarMeta(WorkerVariable, name=name, feature=feature)


class WorkerVariable:
    def __init__(self, name, feature, problem, batch_size, sample_num, worker_num, task_num):
        if feature is None:
            feature = name

        assert feature.startswith("worker_")

        self.name = name
        self.feature = problem[feature]

        size = list(self.feature.size())
        size[0] = batch_size
        del size[1]
        self.value = self.feature.new_zeros(size)

    def step_worker_start(self, b_index, p_index, w_index):
        self.value[b_index] = self.feature[p_index, w_index]


def worker_task_variable(name, feature=None):
    return VarMeta(WorkerTaskVariable, name=name, feature=feature)


class WorkerTaskVariable:
    def __init__(self, name, feature, problem, batch_size, sample_num, worker_num, task_num):
        if feature is None:
            feature = name

        assert feature.startswith("worker_task_")

        self.name = name
        self.feature = problem[feature]

        size = list(self.feature.size())
        size[0] = batch_size

        del size[1]
        self._feature = self.feature.new_zeros(size)

        del size[2]
        self.value = self.feature.new_zeros(size)

    def step_worker_start(self, b_index, p_index, w_index):
        self._feature[b_index] = self.feature[p_index, w_index]

    def step_task(self, b_index, p_index, t_index):
        self.value[b_index] = self._feature[b_index, t_index]


def worker_task_group(name, feature=None):
    return VarMeta(WorkerTaskGroup, name=name, feature=feature)


class WorkerTaskGroup:
    def __init__(self, name, feature, problem, batch_size, sample_num, worker_num, task_num):
        if feature is None:
            feature = name

        assert feature.startswith("task_")

        self.name = name
        self.feature = problem[feature].long()

        NG = self.feature.max() + 1
        assert torch.all(self.feature >= 0)

        self.value = self.feature.new_zeros(batch_size, NG)

    def step_worker_start(self, b_index, p_index, w_index):
        self.value[b_index] = 0

    def step_task(self, b_index, p_index, t_index):
        group = self.feature[p_index, t_index]
        self.value[b_index, group] += 1;


def worker_task_item(name, item_id, item_num):
    return VarMeta(WorkerTaskItem, name=name, item_id=item_id, item_num=item_num)


class WorkerTaskItem:
    def __init__(self, name, item_id, item_num, problem, batch_size, sample_num, worker_num, task_num):
        assert item_id.startswith('task_')
        assert item_num.startswith('task_')

        self.name = name
        self.item_id = repeat(problem[item_id], sample_num).long()
        self.item_num = repeat(problem[item_num], sample_num)

        assert torch.all(self.item_id >= 0)

        size = [0, 0]
        size[0] = self.item_id.size(0)
        size[1] = self.item_id.max() + 1
        self.value = self.item_num.new_zeros(size)

    def step_worker_start(self, b_index, p_index, w_index):
        self.value[b_index] = 0

    def step_task(self, b_index, p_index, t_index):
        item_id = self.item_id[b_index, t_index]
        item_num = self.item_num[b_index, t_index]
        self.value[b_index[:, None], item_id] += item_num

    def make_feat(self):
        NT = self.item_id.size(1)
        v = self.value[:, None, :]
        v = v.expand(-1, NT, -1)

        v = v.gather(2, self.item_id).clamp(0, 1)
        v = self.item_num.clamp(0, 1) - v
        return v.clamp(0, 1).sum(2)


def task_demand_now(name, feature=None, only_this=False):
    return VarMeta(TaskDemandNow, name=name, feature=feature, only_this=only_this)


class TaskDemandNow:
    def __init__(self, name, feature, only_this, problem, batch_size, sample_num, worker_num, task_num):

        if feature is None:
            feature = name

        assert feature.startswith("task_")

        self.name = name
        self.only_this = only_this
        self._value = repeat(problem[feature], sample_num)

        assert self._value.dtype in \
               (torch.int8, torch.int16, torch.int32, torch.int64)
        assert torch.all(self._value >= 0)

        if only_this:
            size = self._value.size(0)
            self.value = self._value.new_zeros(size)
        else:
            self.value = self._value

    def step_task(self, b_index, p_index, t_index, done):
        if done is not None:
            self._value[b_index, t_index] -= done

        if self.only_this:
            self.value[b_index] = self._value[b_index, t_index]
        else:
            self.value = self._value


def worker_count_now(name, feature=None):
    return VarMeta(WorkerCountNow, name=name, feature=feature)


class WorkerCountNow:
    def __init__(self, name, feature, problem, batch_size, sample_num, worker_num, task_num):
        if feature is None:
            feature = name

        assert feature.startswith("worker_")

        self.name = name
        self.value = repeat(problem[feature], sample_num)

        assert self.value.dtype in \
               (torch.int8, torch.int16, torch.int32, torch.int64)
        assert torch.all(self.value >= 0)

    def step_worker_start(self, b_index, p_index, w_index):
        self.value[b_index, w_index] -= 1


def edge_variable(name, feature, last_to_this=False,
                  this_to_task=False, task_to_end=False, last_to_loop=False):
    return VarMeta(EdgeVariable, name=name, feature=feature,
                   last_to_this=last_to_this, this_to_task=this_to_task, task_to_end=task_to_end,
                   last_to_loop=last_to_loop)


class EdgeVariable:
    def __init__(self, name, feature, last_to_this, this_to_task, task_to_end, last_to_loop,
                 problem, batch_size, sample_num, worker_num, task_num):

        assert feature.endswith("_matrix")

        flags = [last_to_this, this_to_task, task_to_end, last_to_loop]
        assert flags.count(True) == 1 and flags.count(False) == 3

        if feature is None:
            feature = name

        self.name = name
        self.last_to_this = last_to_this
        self.this_to_task = this_to_task
        self.task_to_end = task_to_end
        self.last_to_loop = last_to_loop

        self.worker_num = worker_num
        self.task_num = task_num

        self.feature = problem[feature]

        size = list(self.feature.size())
        size[0] = batch_size
        del size[1:3]

        if self.this_to_task or self.task_to_end:
            size.insert(1, task_num)
            self.value = self.feature.new_zeros(size)
        else:
            self.value = self.feature.new_zeros(size)

        self.end_index = self.feature.new_zeros(size[0], dtype=torch.int64)
        self.loop_index = self.feature.new_zeros(size[0], dtype=torch.int64)
        self.last_index = self.feature.new_zeros(size[0], dtype=torch.int64)
        self.task_index = (torch.arange(task_num) + worker_num * 2)[None, :]

    def step_worker_start(self, b_index, p_index, w_index):
        if self.last_to_this:
            self.value[b_index] = 0
            self.last_index[b_index] = w_index
        elif self.this_to_task:
            self.do_this_to_task(b_index, p_index, w_index)
        elif self.task_to_end:
            self.end_index[b_index] = w_index + self.worker_num
            self.do_task_to_end(b_index, p_index)
        elif self.last_to_loop:
            self.value[b_index] = 0
            self.last_index[b_index] = w_index

    def step_worker_end(self, b_index, p_index, w_index):
        this_index = w_index + self.worker_num
        if self.last_to_this:
            self.do_last_to_this(b_index, p_index, this_index)
        elif self.this_to_task:
            self.do_this_to_task(b_index, p_index, this_index)
        elif self.task_to_end:
            pass
        elif self.last_to_loop:
            self.do_last_to_loop(b_index, p_index)

    def step_task(self, b_index, p_index, t_index):
        this_index = t_index + self.worker_num * 2
        if self.last_to_this:
            self.do_last_to_this(b_index, p_index, this_index)
            self.last_index[b_index] = this_index
        elif self.this_to_task:
            self.do_this_to_task(b_index, p_index, this_index)
        elif self.task_to_end:
            pass
        elif self.last_to_loop:
            last_index = self.last_index[b_index]
            loop_index = self.loop_index[b_index]
            self.loop_index[b_index] = torch.where(last_index < self.worker_num, this_index, loop_index)
            self.last_index[b_index] = this_index

    def do_last_to_this(self, b_index, p_index, this_index):
        last_index = self.last_index[b_index]
        self.value[b_index] = self.feature[p_index, last_index, this_index]

    def do_this_to_task(self, b_index, p_index, this_index):
        p_index2 = p_index[:, None]
        this_index2 = this_index[:, None]
        task_index2 = self.task_index
        self.value[b_index] = self.feature[p_index2, this_index2, task_index2]

    def do_task_to_end(self, b_index, p_index):
        p_index2 = p_index[:, None]
        task_index2 = self.task_index
        end_index = self.end_index[b_index]
        end_index2 = end_index[:, None]
        self.value[b_index] = self.feature[p_index2, task_index2, end_index2]

    def do_last_to_loop(self, b_index, p_index):
        loop_index = self.loop_index[b_index]
        last_index = self.last_index[b_index]
        self.value[b_index] = self.feature[p_index, last_index, loop_index]

    def make_feat(self):
        assert self.this_to_task or self.task_to_end, \
            "one of [this_to_task, task_to_end] must be true"
        return self.value.clone()


def worker_used_resource(name, edge_require=None, task_require=None, task_ready=None, worker_ready=None, task_due=None):
    return VarMeta(WorkerUsedResource, name=name, edge_require=edge_require, task_require=task_require,
                   task_ready=task_ready, worker_ready=worker_ready, task_due=task_due)


class WorkerUsedResource:
    def __init__(self, name, edge_require, task_require, task_ready, worker_ready, task_due,
                 problem, batch_size, sample_num, worker_num, task_num):

        assert edge_require is None or edge_require.endswith("_matrix"), "unsupported edge: {}".format(edge_require)
        assert task_require is None or task_require.startswith("task_"), "unsupported task_require: {}".format(
            task_require)
        assert task_ready is None or task_ready.startswith("task_"), "unsupported task_service: {}".format(task_ready)
        assert worker_ready is None or worker_ready.startswith("worker_") and not worker_ready.startswith(
            "worker_task_")
        assert task_due is None or task_due.startswith("task_"), "unsupported task_due: {}".format(task_due)

        self.name = name

        self.worker_num = worker_num
        self.task_num = task_num

        if edge_require is None:
            self.edge_require = None
        else:
            self.edge_require = problem[edge_require]
            self.last_index = self.edge_require.new_zeros(batch_size, dtype=torch.int64)

        if task_require is None:
            self.task_require = None
        else:
            self.task_require = problem[task_require]
            self.task_require2 = repeat(self.task_require, sample_num)

        if task_ready is None:
            self.task_ready = None
        else:
            self.task_ready = problem[task_ready]

        if worker_ready is None:
            self.worker_ready = None
        else:
            self.worker_ready = problem[worker_ready]

        if task_due is None:
            self.task_due = None
        else:
            self.task_due = problem[task_due]

        tenors = [self.edge_require, self.task_require, self.task_ready, self.worker_ready]
        tenors = list(filter(lambda x: x is not None, tenors))
        assert tenors, "at least one of edge_require, task_require, task_ready, worker_ready is required!"

        size = list(tenors[0].size())
        size[0] = batch_size
        if self.edge_require is None:
            del size[1]
        else:
            del size[1:3]

        self.value = tenors[0].new_zeros(size)

    def step_worker_start(self, b_index, p_index, w_index):
        if self.worker_ready is None:
            self.value[b_index] = 0
        else:
            self.value[b_index] = self.worker_ready[p_index, w_index]

        if self.edge_require is not None:
            self.last_index[b_index] = w_index

    def step_worker_end(self, b_index, p_index, w_index):
        if self.edge_require is not None:
            last_index = self.last_index[b_index]
            this_index = w_index + self.worker_num
            self.value[b_index] += self.edge_require[p_index, last_index, this_index]
            self.last_index[b_index] = this_index;

    def step_task(self, b_index, p_index, t_index, done):
        if done is None:
            if self.edge_require is not None:
                last_index = self.last_index[b_index]
                this_index = t_index + (self.worker_num * 2)
                self.value[b_index] += self.edge_require[p_index, last_index, this_index]
                self.last_index[b_index] = this_index

            if self.task_ready is not None:
                self.value[b_index] = torch.max(self.value[b_index], self.task_ready[p_index, t_index])

        else:
            if self.task_require is not None:
                if self.value.dim() == 2:
                    done = done[:, None]
                self.value[b_index] += self.task_require[p_index, t_index] * done

    def make_feat(self):
        assert self.value.dim() == 2, \
            "value's dim must be 2, actual: {}".format(self.value.dim())
        assert self.task_require is not None, "task_require is required"

        v = self.value[:, None, :] + self.task_require2
        return v.clamp(0, 1).sum(2, dtype=v.dtype)


def worker_task_sequence(name):
    return VarMeta(WorkerTaskSequence, name=name)


class WorkerTaskSequence:
    def __init__(self, name, problem, batch_size, sample_num, worker_num, task_num):
        self.name = name
        self.value = None

    def step_finish(self, worker_task_seq):
        self.value = worker_task_seq