|
from greedrl.feature import * |
|
from greedrl.variable import * |
|
from greedrl import Problem |
|
|
|
features = [continuous_feature('task_demand'), |
|
continuous_feature('worker_weight_limit'), |
|
continuous_feature('distance_matrix'), |
|
variable_feature('distance_this_to_task'), |
|
variable_feature('distance_task_to_end')] |
|
|
|
variables = [task_demand_now('task_demand'), |
|
task_demand_now('task_demand_this', feature='task_demand', only_this=True), |
|
feature_variable('task_weight'), |
|
task_variable('task_weight_this', feature='task_weight'), |
|
worker_variable('worker_weight_limit'), |
|
worker_used_resource('worker_used_weight', task_require='task_weight'), |
|
edge_variable('distance_last_to_this', feature='distance_matrix', last_to_this=True)] |
|
|
|
|
|
class Constraint: |
|
|
|
def do_task(self): |
|
worker_weight_limit = self.worker_weight_limit - self.worker_used_weight |
|
return torch.min(self.task_demand_this, worker_weight_limit // self.task_weight_this) |
|
|
|
def mask_task(self): |
|
|
|
mask = self.task_demand <= 0 |
|
|
|
worker_weight_limit = self.worker_weight_limit - self.worker_used_weight |
|
|
|
mask |= self.task_weight > worker_weight_limit[:, None] |
|
return mask |
|
|
|
def finished(self): |
|
return torch.all(self.task_demand <= 0, 1) |
|
|
|
|
|
class Objective: |
|
|
|
def step_worker_end(self): |
|
return self.distance_last_to_this |
|
|
|
def step_task(self): |
|
return self.distance_last_to_this |
|
|
|
|
|
def make_problem(batch_count, batch_size=1, task_count=100): |
|
assert batch_size == 1 |
|
|
|
NT = task_count |
|
problem_list = [] |
|
for i in range(batch_count): |
|
problem = Problem() |
|
problem.id = i |
|
|
|
problem.worker_weight_limit = [50] |
|
|
|
problem.task_demand = torch.randint(1, 10, (NT,), dtype=torch.int64) |
|
|
|
|
|
problem.task_weight = torch.ones(NT, dtype=torch.int64) |
|
|
|
loc = torch.rand(NT + 1, 2, dtype=torch.float32) |
|
distance_matrix = torch.norm(loc[:, None, :] - loc[None, :, :], dim=2) * 1000 |
|
problem.distance_matrix = distance_matrix.to(torch.int64) |
|
|
|
problem.variables = variables |
|
problem.constraint = Constraint |
|
problem.objective = Objective |
|
|
|
problem_list.append(problem) |
|
|
|
return problem_list |
|
|
|
|
|
if __name__ == '__main__': |
|
import sys |
|
import os.path as osp |
|
sys.path.append(osp.join(osp.dirname(__file__), '../')) |
|
import runner |
|
|
|
runner.run(make_problem) |
|
|