GreedRL / examples /runner.py
先坤
add greedrl
db26c81
import time
import random
import argparse
import torch
from greedrl import Problem, Solution, Solver
def run(make_problem, mask_task_ratio=0.1):
random.seed(123)
torch.manual_seed(123)
problem_list = make_problem(1)
parser = argparse.ArgumentParser(description="")
parser.add_argument('--device', default=None, type=str)
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--agent_file', default=None, type=str)
parser.add_argument('--valid_steps', default=5, type=int)
parser.add_argument('--max_steps', default=10000000, type=int)
args, _ = parser.parse_known_args()
for k, v in args.__dict__.items():
print("arg: {} = {}".format(k, v))
# rl train
solver = Solver(device=args.device)
solver.train(args.agent_file, problem_list, problem_list,
batch_size=args.batch_size, valid_steps=args.valid_steps, max_steps=args.max_steps)
# predict
solver = Solver(device=args.device)
if args.agent_file is not None:
solver.load_agent(args.agent_file)
print("solve ...")
start = time.time()
for problem in problem_list:
solver.solve(problem, batch_size=args.batch_size)
print("time: {}s".format(time.time() - start))