from greedrl.feature import * from greedrl.variable import * from greedrl.function import * from greedrl import Problem features = [local_category('task_group'), global_category('task_priority', 2), variable_feature('distance_this_to_task'), variable_feature('distance_task_to_end')] variables = [task_demand_now('task_demand_now', feature='task_demand'), task_demand_now('task_demand_this', feature='task_demand', only_this=True), feature_variable('task_weight'), feature_variable('task_group'), feature_variable('task_priority'), feature_variable('task_due_time2', feature='task_due_time'), task_variable('task_due_time'), task_variable('task_service_time'), task_variable('task_due_time_penalty'), worker_variable('worker_basic_cost'), worker_variable('worker_distance_cost'), worker_variable('worker_due_time'), worker_variable('worker_weight_limit'), worker_used_resource('worker_used_weight', task_require='task_weight'), worker_used_resource('worker_used_time', 'distance_matrix', 'task_service_time', 'task_ready_time', 'worker_ready_time'), edge_variable('distance_last_to_this', feature='distance_matrix', last_to_this=True), edge_variable('distance_this_to_task', feature='distance_matrix', this_to_task=True), edge_variable('distance_task_to_end', feature='distance_matrix', task_to_end=True)] class Constraint: def do_task(self): return self.task_demand_this def mask_worker_end(self): return task_group_split(self.task_group, self.task_demand_now <= 0) def mask_task(self): mask = self.task_demand_now <= 0 mask |= task_group_priority(self.task_group, self.task_priority, mask) worker_used_time = self.worker_used_time[:, None] + self.distance_this_to_task mask |= (worker_used_time > self.task_due_time2) & (self.task_priority == 0) # 容量约束 worker_weight_limit = self.worker_weight_limit - self.worker_used_weight mask |= self.task_demand_now * self.task_weight > worker_weight_limit[:, None] return mask def finished(self): return torch.all(self.task_demand_now <= 0, 1) class Objective: def step_worker_start(self): return self.worker_basic_cost def step_worker_end(self): feasible = self.worker_used_time <= self.worker_due_time return self.distance_last_to_this * self.worker_distance_cost, feasible def step_task(self): worker_used_time = self.worker_used_time - self.task_service_time feasible = worker_used_time <= self.task_due_time feasible &= worker_used_time <= self.worker_due_time cost = self.distance_last_to_this * self.worker_distance_cost return torch.where(feasible, cost, cost + self.task_due_time_penalty), feasible def make_problem(batch_count, batch_size=1, task_count=100): assert batch_size == 1 N = task_count // 2 # 订单数, 一个订单有pickup, delivery两个任务 problem_list = [] for i in range(batch_count): problem = Problem() problem.id = i problem.worker_weight_limit = torch.tensor([50], dtype=torch.float32) problem.worker_ready_time = torch.tensor([0], dtype=torch.float32) problem.worker_due_time = torch.tensor([1000000], dtype=torch.float32) problem.worker_basic_cost = torch.tensor([100], dtype=torch.float32) problem.worker_distance_cost = torch.tensor([1], dtype=torch.float32) task_demand = torch.randint(1, 10, (N,), dtype=torch.int32) problem.task_demand = torch.cat([task_demand, task_demand], 0) task_weight = torch.ones(N, dtype=torch.float32) problem.task_weight = torch.cat([task_weight, task_weight * -1], 0) task_group = torch.arange(N, dtype=torch.int32) problem.task_group = torch.cat([task_group, task_group], 0) task_priority = torch.zeros(N, dtype=torch.int32) problem.task_priority = torch.cat([task_priority, task_priority + 1], 0) task_ready_time = torch.zeros(N, dtype=torch.float32) problem.task_ready_time = torch.cat([task_ready_time, task_ready_time], 0) task_due_time = torch.randint(10000, 100000, (N,), dtype=torch.float32) problem.task_due_time = torch.cat([task_due_time, task_due_time * 2], 0) task_service_time = torch.zeros(N, dtype=torch.float32) problem.task_service_time = torch.cat([task_service_time, task_service_time]) task_due_time_penalty = torch.ones(N, dtype=torch.float32) problem.task_due_time_penalty = torch.cat([task_due_time_penalty, task_due_time_penalty]) loc = torch.rand(N + 1, 2, dtype=torch.float32) distance_matrix = torch.norm(loc[:, None, :] - loc[None, :, :], dim=2) * 1000 distance_matrix = distance_matrix.to(torch.float32) index = torch.cat([torch.zeros(N + 1, dtype=torch.int64), torch.arange(N, dtype=torch.int64) + 1]) index1 = index[:, None] index2 = index[None, :] problem.distance_matrix = distance_matrix[index1, index2] problem.features = features problem.variables = variables problem.constraint = Constraint problem.objective = Objective problem_list.append(problem) return problem_list if __name__ == '__main__': import sys import os.path as osp sys.path.append(osp.join(osp.dirname(__file__), '../')) import runner runner.run(make_problem)