from greedrl.feature import * from greedrl.variable import * from greedrl import Problem features = [continuous_feature('task_location'), variable_feature('distance_this_to_task'), variable_feature('distance_task_to_end')] variables = [task_demand_now('task_demand_now', feature='task_demand'), task_demand_now('task_demand_this', feature='task_demand', only_this=True), edge_variable('distance_last_to_this', feature='distance_matrix', last_to_this=True), edge_variable('distance_this_to_task', feature='distance_matrix', this_to_task=True), edge_variable('distance_task_to_end', feature='distance_matrix', task_to_end=True), edge_variable('distance_last_to_loop', feature='distance_matrix', last_to_loop=True)] class Constraint: def do_task(self): return self.task_demand_this def mask_task(self): # 已经完成的任务 mask = self.task_demand_now <= 0 return mask def mask_worker_end(self): return torch.any(self.task_demand_now > 0, 1) def finished(self): return torch.all(self.task_demand_now <= 0, 1) class Objective: def step_worker_end(self): return self.distance_last_to_loop def step_task(self): return self.distance_last_to_this def make_problem(batch_count, batch_size=1, task_count=100): NP = batch_size NT = task_count problem_list = [] for i in range(batch_count): problem = Problem(True) problem.task_demand = torch.ones(NP, NT, dtype=torch.int32) loc = torch.rand(NP, NT + 1, 2, dtype=torch.float32) problem.distance_matrix = torch.norm(loc[:, :, None, :] - loc[:, None, :, :], dim=3) problem.distance_matrix[0, :] = 0 problem.distance_matrix[:, 0] = 0 problem.task_location = loc[:, 1:] problem.features = features problem.variables = variables problem.constraint = Constraint problem.objective = Objective problem_list.append(problem) return problem_list if __name__ == '__main__': import sys import os.path as osp sys.path.append(osp.join(osp.dirname(__file__), '../')) import runner runner.run(make_problem)