import os import sys import time import torch import argparse import utils from greedrl import Solver torch.set_num_threads(1) torch.set_num_interop_threads(1) def do_solve(args): print("args: {}".format(vars(args))) problem_size = args.problem_size problem_count = args.problem_count batch_size = args.batch_size assert problem_count % batch_size == 0 batch_count = problem_count // batch_size problem_list = utils.make_problem(batch_count, batch_size, problem_size) solver = Solver(device=args.device) model_path = os.path.join('./', args.model_name) solver.load_agent(model_path) total_cost = 0 if solver.device.type == 'cuda': torch.cuda.synchronize() start_time = time.time() for problem in problem_list: solution = solver.solve(problem, greedy=False, batch_size=batch_size) total_cost += solution.cost.sum().item() if solver.device.type == 'cuda': torch.cuda.synchronize() total_time = time.time() - start_time avg_cost = total_cost / problem_count avg_time = total_time / problem_count print() print("-----------------------------------------------------") print("avg_cost: {:.4f}".format(avg_cost)) print("avg_time: {:.6f}s".format(avg_time)) print("total_count: {}".format(problem_count)) print("-----------------------------------------------------\n") sys.stdout.flush() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--device', default='cpu', choices=['cpu', 'cuda'], help="choose a device") parser.add_argument('--model_name', default='cvrp_100.pt', choices=['cvrp_100.pt', 'cvrp_1000.pt', 'cvrp_2000.pt', 'cvrp_5000.pt'], help="choose a model") parser.add_argument('--problem_size', default=100, type=int, choices=[100, 1000, 2000, 5000], help='problem size') parser.add_argument('--problem_count', default=128, type=int, help='total number of generated problem instances') parser.add_argument('--batch_size', default=128, type=int, help='batch size for feedforwarding') args = parser.parse_args() do_solve(args)