import json from greedrl import Problem from greedrl.feature import * from greedrl.variable import * features = [continuous_feature('worker_weight_limit'), continuous_feature('worker_ready_time'), continuous_feature('worker_due_time'), continuous_feature('worker_basic_cost'), continuous_feature('worker_distance_cost'), continuous_feature('task_demand'), continuous_feature('task_weight'), continuous_feature('task_ready_time'), continuous_feature('task_due_time'), continuous_feature('task_service_time'), continuous_feature('distance_matrix')] variables = [task_demand_now('task_demand_now', feature='task_demand'), task_demand_now('task_demand_this', feature='task_demand', only_this=True), feature_variable('task_weight'), feature_variable('task_due_time'), feature_variable('task_ready_time'), feature_variable('task_service_time'), worker_variable('worker_weight_limit'), worker_variable('worker_due_time'), worker_variable('worker_basic_cost'), worker_variable('worker_distance_cost'), worker_used_resource('worker_used_weight', task_require='task_weight'), worker_used_resource('worker_used_time', 'distance_matrix', 'task_service_time', 'task_ready_time', 'worker_ready_time'), edge_variable('distance_last_to_this', feature='distance_matrix', last_to_this=True), edge_variable('distance_this_to_task', feature='distance_matrix', this_to_task=True), edge_variable('distance_task_to_end', feature='distance_matrix', task_to_end=True)] class Constraint: def do_task(self): return self.task_demand_this def mask_task(self): # 已经完成的任务 mask = self.task_demand_now <= 0 # 车辆容量限制 worker_weight_limit = self.worker_weight_limit - self.worker_used_weight mask |= self.task_demand_now * self.task_weight > worker_weight_limit[:, None] worker_used_time = self.worker_used_time[:, None] + self.distance_this_to_task mask |= worker_used_time > self.task_due_time worker_used_time = torch.max(worker_used_time, self.task_ready_time) worker_used_time += self.task_service_time worker_used_time += self.distance_task_to_end mask |= worker_used_time > self.worker_due_time[:, None] return mask def finished(self): return torch.all(self.task_demand_now <= 0, 1) class Objective: def step_worker_start(self): return self.worker_basic_cost def step_worker_end(self): return self.distance_last_to_this * self.worker_distance_cost def step_task(self): return self.distance_last_to_this * self.worker_distance_cost def make_problem_from_json(data): if isinstance(data, str): data = json.loads(data) problem = Problem() problem.worker_weight_limit = torch.tensor(data['worker_weight_limit'], dtype=torch.float32) problem.worker_ready_time = torch.tensor(data['worker_ready_time'], dtype=torch.float32) problem.worker_due_time = torch.tensor(data['worker_due_time'], dtype=torch.float32) problem.worker_basic_cost = torch.tensor(data['worker_basic_cost'], dtype=torch.float32) problem.worker_distance_cost = torch.tensor(data['worker_distance_cost'], dtype=torch.float32) problem.task_demand = torch.tensor(data['task_demand'], dtype=torch.int32) problem.task_weight = torch.tensor(data['task_weight'], dtype=torch.float32) problem.task_ready_time = torch.tensor(data['task_ready_time'], dtype=torch.float32) problem.task_due_time = torch.tensor(data['task_due_time'], dtype=torch.float32) problem.task_service_time = torch.tensor(data['task_service_time'], dtype=torch.float32) problem.distance_matrix = torch.tensor(data['distance_matrix'], dtype=torch.float32); problem.features = features problem.variables = variables problem.constraint = Constraint problem.objective = Objective return problem def make_problem(batch_count, batch_size=1, task_count=100): assert batch_size == 1 NT = task_count problem_list = [] for i in range(batch_count): problem = Problem() problem.id = i problem.worker_weight_limit = torch.tensor([50], dtype=torch.float32) problem.worker_ready_time = torch.tensor([0], dtype=torch.float32) problem.worker_due_time = torch.tensor([1000000], dtype=torch.float32) problem.worker_basic_cost = torch.tensor([100], dtype=torch.float32) problem.worker_distance_cost = torch.tensor([1], dtype=torch.float32) problem.task_demand = torch.randint(1, 10, (NT,), dtype=torch.int32) problem.task_weight = torch.ones(NT, dtype=torch.float32) problem.task_ready_time = torch.zeros(NT, dtype=torch.float32) problem.task_due_time = torch.randint(10000, 100000, (NT,), dtype=torch.float32) problem.task_service_time = torch.zeros(NT, dtype=torch.float32) loc = torch.rand(NT + 1, 2, dtype=torch.float32) problem.distance_matrix = torch.norm(loc[:, None, :] - loc[None, :, :], dim=2) * 1000 problem_list.append(problem) problem.features = features problem.variables = variables problem.constraint = Constraint problem.objective = Objective return problem_list if __name__ == '__main__': import sys import os.path as osp sys.path.append(osp.join(osp.dirname(__file__), '../')) import runner runner.run(make_problem)