File size: 49,786 Bytes
c08e521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
#! python3
# -*- encoding: utf-8 -*-

from copy import deepcopy
from torch.nn.init import xavier_uniform_
import torch.nn.functional as F
from torch.nn import Parameter
from torch.nn.init import normal_
import torch.utils.checkpoint
from torch import Tensor, device
from TAAS_utils import * 
from transformers.modeling_utils import ModuleUtilsMixin
from transformers import AutoTokenizer, AutoModel, BertTokenizer
from graphormer import Graphormer3D 
import pickle
import torch
import sys
from ner_model import NER_model
import numpy as np


from htc_loss import HTCLoss
from transformers.utils.hub import cached_file
remap_code_2_chn_file_path = cached_file( 
    'Cainiao-AI/TAAS',
    'remap_code_2_chn.pkl'
)
s2_label_dict_remap = {
 0: '0',
 1: '1',
 2: '2',
 3: '3',
 4: '4',
 5: '5',
 6: '6',
 7: '7',
 8: '8',
 9: '9',
 10: 'a',
 11: 'b',
 12: 'c',
 13: 'd',
 14: 'e',
 15: 'f'}

class StellarEmbedding(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings."""

    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
        self.ner_type_embeddings = nn.Embedding(10, config.hidden_size)
        self.use_task_id = config.use_task_id
        if config.use_task_id:
            self.task_type_embeddings = nn.Embedding(config.task_type_vocab_size, config.hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
        self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
        self.register_buffer("token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long),
                             persistent=False)
        self._reset_parameters()

    def forward(
            self,
            input_ids: Optional[torch.LongTensor] = None,
            token_type_ids: Optional[torch.LongTensor] = None,
            ner_type_ids: Optional[torch.LongTensor] = None,
            task_type_ids: Optional[torch.LongTensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            past_key_values_length: int = 0,
    ) -> torch.Tensor:
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]

        if position_ids is None:
            position_ids = self.position_ids[:, past_key_values_length: seq_length + past_key_values_length]

        # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
        # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
        # issue #5664
        if token_type_ids is None:
            if hasattr(self, "token_type_ids"):
                buffered_token_type_ids = self.token_type_ids[:, :seq_length]
                buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
                token_type_ids = buffered_token_type_ids_expanded
            else:
                token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)
        if ner_type_ids is not None:
            ner_type_embeddings = self.ner_type_embeddings(ner_type_ids)

            embeddings = inputs_embeds + token_type_embeddings + ner_type_embeddings
        else:
            embeddings = inputs_embeds + token_type_embeddings
        if self.position_embedding_type == "absolute":
            position_embeddings = self.position_embeddings(position_ids)
            embeddings += position_embeddings

        # add `task_type_id` for ERNIE model
        if self.use_task_id:
            if task_type_ids is None:
                task_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
            task_type_embeddings = self.task_type_embeddings(task_type_ids)
            embeddings += task_type_embeddings

        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                normal_(p, mean=0.0, std=0.02)

    def set_pretrained_weights(self, path):
        pre_train_weights = torch.load(path, map_location=torch.device('cpu'))
        new_weights = dict()
        for layer in self.state_dict().keys():
            if layer == 'position_ids':
                new_weights[layer] = pre_train_weights['ernie_model.embeddings.position_ids']
            elif layer == 'word_embeddings.weight':
                new_weights[layer] = pre_train_weights['ernie_model.embeddings.word_embeddings.weight']
            elif layer == 'position_embeddings.weight':
                new_weights[layer] = pre_train_weights['ernie_model.embeddings.position_embeddings.weight']
            elif layer == 'token_type_embeddings.weight':
                new_weights[layer] = pre_train_weights['ernie_model.embeddings.token_type_embeddings.weight']
            elif layer == 'task_type_embeddings.weight':
                new_weights[layer] = pre_train_weights['ernie_model.embeddings.task_type_embeddings.weight']
            elif layer == 'LayerNorm.weight':
                new_weights[layer] = pre_train_weights['ernie_model.embeddings.LayerNorm.weight']
            elif layer == 'LayerNorm.bias':
                new_weights[layer] = pre_train_weights['ernie_model.embeddings.LayerNorm.bias']
            else:
                new_weights[layer] = self.state_dict()[layer]
        self.load_state_dict(new_weights)

    def save_weights(self, path):
        torch.save(self.state_dict(), path)

    def load_weights(self, path):
        self.load_state_dict(torch.load(path))


# Copied from transformers.models.bert.modeling_bert.BertLayer
class StellarLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = ErnieAttention(config)
        self.is_decoder = config.is_decoder
        self.add_cross_attention = config.add_cross_attention
        if self.add_cross_attention:
            if not self.is_decoder:
                raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
            self.crossattention = ErnieAttention(config, position_embedding_type="absolute")
        self.intermediate = ErnieIntermediate(config)
        self.output = ErnieOutput(config)

    def forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: Optional[torch.FloatTensor] = None,
            head_mask: Optional[torch.FloatTensor] = None,
            encoder_hidden_states: Optional[torch.FloatTensor] = None,
            encoder_attention_mask: Optional[torch.FloatTensor] = None,
            past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
            output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor]:
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
        self_attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            head_mask,
            output_attentions=output_attentions,
            past_key_value=self_attn_past_key_value,
        )
        attention_output = self_attention_outputs[0]

        # if decoder, the last output is tuple of self-attn cache
        if self.is_decoder:
            outputs = self_attention_outputs[1:-1]
            present_key_value = self_attention_outputs[-1]
        else:
            outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        cross_attn_present_key_value = None
        if self.is_decoder and encoder_hidden_states is not None:
            if not hasattr(self, "crossattention"):
                raise ValueError(
                    f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
                    " by setting `config.add_cross_attention=True`"
                )

            # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
            cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
            cross_attention_outputs = self.crossattention(
                attention_output,
                attention_mask,
                head_mask,
                encoder_hidden_states,
                encoder_attention_mask,
                cross_attn_past_key_value,
                output_attentions,
            )
            attention_output = cross_attention_outputs[0]
            outputs = outputs + cross_attention_outputs[1:-1]  # add cross attentions if we output attention weights

            # add cross-attn cache to positions 3,4 of present_key_value tuple
            cross_attn_present_key_value = cross_attention_outputs[-1]
            present_key_value = present_key_value + cross_attn_present_key_value

        layer_output = apply_chunking_to_forward(
            self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
        )
        outputs = (layer_output,) + outputs

        # if decoder, return the attn key/values as the last output
        if self.is_decoder:
            outputs = outputs + (present_key_value,)

        return outputs

    def feed_forward_chunk(self, attention_output):
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


class StellarEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([StellarLayer(config) for _ in range(config.num_hidden_layers)])
        self.gradient_checkpointing = False

    def forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: Optional[torch.FloatTensor] = None,
            head_mask: Optional[torch.FloatTensor] = None,
            encoder_hidden_states: Optional[torch.FloatTensor] = None,
            encoder_attention_mask: Optional[torch.FloatTensor] = None,
            past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = False,
            output_hidden_states: Optional[bool] = False,
            return_dict: Optional[bool] = True,
    ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None
        all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None

        next_decoder_cache = () if use_cache else None
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None
            past_key_value = past_key_values[i] if past_key_values is not None else None

            if self.gradient_checkpointing and self.training:

                if use_cache:
                    logger.warning(
                        "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                    )
                    use_cache = False

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, past_key_value, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    past_key_value,
                    output_attentions,
                )

            hidden_states = layer_outputs[0]
            if use_cache:
                next_decoder_cache += (layer_outputs[-1],)
            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)
                if self.config.add_cross_attention:
                    all_cross_attentions = all_cross_attentions + (layer_outputs[2],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [
                    hidden_states,
                    next_decoder_cache,
                    all_hidden_states,
                    all_self_attentions,
                    all_cross_attentions,
                ]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_decoder_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=all_cross_attentions,
        )


# Copied from transformers.models.bert.modeling_bert.BertPooler
class StellarPooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class StellarModel(nn.Module):
    """
    """

    def __init__(self, config, add_pooling_layer=True):
        super().__init__()
        self.config = config
        self.encoder = StellarEncoder(config)
        self.pooler = StellarPooler(config) if add_pooling_layer else None
        # Initialize weights and apply final processing
        self._reset_parameters()

    # Copied from transformers.models.bert.modeling_bert.BertModel._prune_heads
    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    def forward(
            self,
            h_input,
            input_ids: Optional[torch.Tensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            token_type_ids: Optional[torch.Tensor] = None,
            task_type_ids: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.Tensor] = None,
            head_mask: Optional[torch.Tensor] = None,
            inputs_embeds: Optional[torch.Tensor] = None,
            encoder_hidden_states: Optional[torch.Tensor] = None,
            encoder_attention_mask: Optional[torch.Tensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
        r"""
        encoder_hidden_states  (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
            the model is configured as a decoder.
        encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
            the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.
        past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
            Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if self.config.is_decoder:
            use_cache = use_cache if use_cache is not None else self.config.use_cache
        else:
            use_cache = False

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        batch_size, seq_length = input_shape
        device = input_ids.device if input_ids is not None else inputs_embeds.device

        # past_key_values_length
        past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0

        if attention_mask is None:
            attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)

        if token_type_ids is None:
            if hasattr(self.embeddings, "token_type_ids"):
                buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
                buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
                token_type_ids = buffered_token_type_ids_expanded
            else:
                token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if self.config.is_decoder and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
        else:
            encoder_extended_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        encoder_outputs = self.encoder(
            h_input,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_extended_attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPoolingAndCrossAttentions(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            past_key_values=encoder_outputs.past_key_values,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
            cross_attentions=encoder_outputs.cross_attentions,
        )

    def get_extended_attention_mask(
            self, attention_mask: Tensor, input_shape: Tuple[int], device: device = None, dtype: torch.float = None
    ) -> Tensor:
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.

        Arguments:
            attention_mask (`torch.Tensor`):
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
            input_shape (`Tuple[int]`):
                The shape of the input to the model.

        Returns:
            `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
        """
        if dtype is None:
            dtype = torch.float32

        if not (attention_mask.dim() == 2 and self.config.is_decoder):
            # show warning only if it won't be shown in `create_extended_attention_mask_for_decoder`
            if device is not None:
                warnings.warn(
                    "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
                )
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            if self.config.is_decoder:
                extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder(
                    input_shape, attention_mask, device
                )
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
                f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and the dtype's smallest value for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min
        return extended_attention_mask

    def get_head_mask(
            self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
    ) -> Tensor:
        """
        Prepare the head mask if needed.

        Args:
            head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
                The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
            num_hidden_layers (`int`):
                The number of hidden layers in the model.
            is_attention_chunked: (`bool`, *optional*, defaults to `False`):
                Whether or not the attentions scores are computed by chunks or not.

        Returns:
            `torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with
            `[None]` for each layer.
        """
        if head_mask is not None:
            head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
            if is_attention_chunked is True:
                head_mask = head_mask.unsqueeze(-1)
        else:
            head_mask = [None] * num_hidden_layers

        return head_mask

    def _reset_parameters(self):
        r"""Initiate parameters in the transformer model."""
        for p in self.parameters():
            if p.dim() > 1:
                normal_(p, mean=0.0, std=self.config.initializer_range)

    def save_weights(self, path):
        torch.save(self.state_dict(), path)

    def load_weights(self, path):
        self.load_state_dict(torch.load(path))


class TAAS(PreTrainedModel):
    def __init__(self, config, return_last_hidden_state=False):
        super(TAAS, self).__init__(config)

        """
        :param d_model:  d_k = d_v = d_model/nhead = 64, 模型中向量的维度,论文默认值为 512
        :param nhead:               多头注意力机制中多头的数量,论文默认为值 8
        :param num_encoder_layers:  encoder堆叠的数量,也就是论文中的N,论文默认值为6
        :param num_decoder_layers:  decoder堆叠的数量,也就是论文中的N,论文默认值为6
        :param dim_feedforward:     全连接中向量的维度,论文默认值为 2048
        :param dropout:             丢弃率,论文中的默认值为 0.1
        """

        self.config = deepcopy(config)
        self.return_last_hidden_state = return_last_hidden_state
        self.dropout = nn.Dropout(self.config.hidden_dropout_prob)
        #  ================ StellarEmbedding =====================
        self.embedding = StellarEmbedding(self.config)
        self.embedding_weights = Parameter(torch.ones(1, 1, self.config.hidden_size))
        #  ================ StellarModel =====================
        self.stellar_config = deepcopy(config)
        self.stellar_model = StellarModel(self.stellar_config)
        #  ================ TranSAGE =====================
        # self.transage_layer = TranSAGE()
        self.graphormer = Graphormer3D()
        # ================ 解码部分 =====================
        self.encoder_config = deepcopy(config)
        self.encoder_config.num_hidden_layers = 1
        self.encoder = StellarModel(self.encoder_config)
        self.encoder_out_dim = self.encoder_config.hidden_size
        # ================ GC任务部分 =====================
        self.gc_trans = nn.Linear(self.encoder_out_dim, 16 * 33, bias=True)
        # ================ MLM任务部分 =====================
        self.cls = ErnieForMaskedLM(self.stellar_config).cls
        # ================ alias任务部分 =====================
        self.down_hidden_dim = 512
        self.down_kernel_num = 128
        self.alias_trans = nn.Linear(self.encoder_out_dim, self.down_hidden_dim, bias=True)
        self.alias_trans2 = torch.nn.Conv2d(1, self.down_kernel_num, (2, self.down_hidden_dim), stride=1, bias=True)
        self.alias_layer = nn.Linear(self.down_kernel_num * 5, 2 * 5, bias=True)
        # ================ AOI任务部分 =====================
        self.aoi_trans = nn.Linear(self.encoder_out_dim, self.down_hidden_dim, bias=True)
        self.aoi_trans2 = torch.nn.Conv2d(1, self.down_kernel_num, (2, self.down_hidden_dim), stride=1, bias=True)
        self.aoi_layer = nn.Linear(self.down_kernel_num * 5, 2 * 5, bias=True)
        
        # ================ HTC任务部分 =====================
        self.htc_trans = nn.Linear(self.encoder_out_dim, 5 * 100, bias=True)

        # ================ NER任务部分 =====================
        # self.ner_model = torch.load('ner.pth')
        self.ner_model = NER_model(vocab_size=11)
        # self.ner_model.load_state_dict(torch.load('ner.pth'))


    def forward(self,
                input_ids,
                attention_mask,
                token_type_ids,
                node_position_ids,
                spatial_pos, in_degree, out_degree, edge_type_matrix, edge_input,
                prov_city_mask: Optional[torch.Tensor] = None,
                sequence_len=6,
                labels: Optional[torch.Tensor] = None
                ):
        """
        :param input_ids:   [sequence_len * batch_size, src_len]
        :param attention_mask:  [sequence_len * batch_size, src_len]
        :param token_type_ids:  [sequence_len * batch_size, src_len]
        :param sequence_len:  int
        :param labels:
        :param is_eval: bool
        :return:
        """
        batch_size_input = int(input_ids.shape[0] / sequence_len)

        embedding_output = self.embedding(input_ids=input_ids, token_type_ids=token_type_ids)
        
        stellar_predictions = self.stellar_model(embedding_output,
                                                 input_ids=input_ids,
                                                 token_type_ids=token_type_ids,
                                                 attention_mask=attention_mask)
        last_hidden_state = stellar_predictions[0].contiguous().view(batch_size_input, sequence_len, -1,
                                                                     self.encoder_out_dim)
        pooler_output = stellar_predictions[1].contiguous().view(batch_size_input, sequence_len, self.encoder_out_dim)
        h_ = self.graphormer(pooler_output, spatial_pos, in_degree, out_degree, edge_type_matrix, edge_input, node_position_ids)
        h_ = h_.unsqueeze(2)
        new_hidden_state = torch.cat((h_, last_hidden_state[:, :, 1:, :]), dim=2)
        new_hidden_state = new_hidden_state.contiguous().view(batch_size_input * sequence_len, -1, self.encoder_out_dim)
        encoder_outputs = self.encoder(new_hidden_state,
                                       input_ids=input_ids,
                                       token_type_ids=token_type_ids,
                                       attention_mask=attention_mask)
        final_hidden_state = encoder_outputs[0]
        final_pooler_output = encoder_outputs[1].contiguous().view(batch_size_input, sequence_len, self.encoder_out_dim)
        prediction_scores = self.cls(final_hidden_state)  # 用于 MLM 任务

        gc_layer_out = self.gc_trans(final_pooler_output)
        gc_layer_out = gc_layer_out.contiguous().view(-1, 16)
        
        htc_layer_out = self.htc_trans(final_pooler_output)
        htc_layer_out = htc_layer_out.contiguous().view(-1, 100)


        # MLM loss
        if labels is not None:
            # masked_lm_loss = None
            loss_fct = CrossEntropyLoss()  # -100 index = padding token
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
            return [gc_layer_out, masked_lm_loss, prediction_scores, htc_layer_out]

        if self.return_last_hidden_state:
            return final_pooler_output, pooler_output

        return gc_layer_out, final_pooler_output, final_hidden_state, prediction_scores, last_hidden_state, htc_layer_out

    def get_htc_code(self, htc_layer_out):
        htc_loss_fct = HTCLoss(device=self.device, reduction='mean')
        htc_pred = htc_loss_fct.get_htc_code(htc_layer_out)
        return htc_pred

    def decode_htc_code_2_chn(self, htc_pred):
        arr = htc_pred
        with open(remap_code_2_chn_file_path, 'rb') as fr:
            remap_code_2_chn = pickle.loads(fr.read())
        return remap_code_2_chn['{:02d}{:02d}{:02d}{:01d}{:02d}'.format(arr[0], arr[1], arr[2], arr[3], arr[4])]

    # Address Standarization
    def addr_standardize(self, address):
        tokenizer = BertTokenizer.from_pretrained('nghuyong/ernie-3.0-base-zh')
        encoded_input = tokenizer(address, return_tensors='pt', padding='max_length',
                                truncation=True,  # 超过最大长度截断
                                max_length=60,
                                add_special_tokens=True).to(self.device)
        word_ids = encoded_input['input_ids']
        attention_mask = encoded_input['attention_mask']

        length = len(word_ids)
        node_position_ids = torch.tensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
        spatial_pos = torch.LongTensor(np.zeros((length, 1, 1), dtype=np.int64)).to(self.device)
        in_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
        out_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
        edge_type_matrix = torch.LongTensor(8*np.ones((length, 1, 1), dtype=np.int64)).to(self.device)
        edge_input = torch.LongTensor(8*np.ones((length, 1, 1, 1), dtype=np.int64)).to(self.device)

        logits = self.ner_model(**encoded_input,
                                    node_position_ids = node_position_ids,
                                    spatial_pos = spatial_pos, 
                                    in_degree = in_degree, 
                                    out_degree = out_degree,
                                    edge_type_matrix = edge_type_matrix,
                                    edge_input = edge_input,)[0]
        output = []
        ner_labels = torch.argmax(logits, dim=-1)
        if len(address) == 1:
            ner_labels = ner_labels.unsqueeze(0)
        for i in range(len(address)):
            ner_label = ner_labels[i]
            word_id = word_ids[i]
            # cut padding
            idx = torch.where(attention_mask[i]>0)
            ner_label = ner_label[idx][1:-1]
            word_id = word_id[idx][1:-1]
            # cut other info 
            idx1 = torch.where(ner_label != 0)
            ner_label = ner_label[idx1].tolist()
            word_id = word_id[idx1].tolist()
            # add house info
            if 8 in ner_label:
                idx2 = ''.join([str(i) for i in ner_label]).rfind('8')
                word_id.insert(idx2+1, 2770)
                ner_label.insert(idx2+1, 8)
            if 9 in ner_label:
                idx2 = ''.join([str(i) for i in ner_label]).rfind('9')
                word_id.insert(idx2+1, 269)
                word_id.insert(idx2+2, 183)
                ner_label.insert(idx2+1, 9)
                ner_label.insert(idx2+2, 9)
            if 10 in ner_label:
                idx2 = ''.join([str(i) for i in ner_label]).rfind('10')
                word_id.insert(idx2+1, 485)
                ner_label.insert(idx2+1, 10)

            output.append(tokenizer.decode(word_id).replace(' ', ''))
            
        return output

    # Address Entity Tokenization
    def addr_entity(self, address):
        tokenizer = BertTokenizer.from_pretrained('nghuyong/ernie-3.0-base-zh')
        encoded_input = tokenizer(address, return_tensors='pt', padding='max_length',
                                truncation=True,  # 超过最大长度截断
                                max_length=60,
                                add_special_tokens=True).to(self.device)
        word_ids = encoded_input['input_ids']
        attention_mask = encoded_input['attention_mask']

        length = len(word_ids)
        node_position_ids = torch.tensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
        spatial_pos = torch.LongTensor(np.zeros((length, 1, 1), dtype=np.int64)).to(self.device)
        in_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
        out_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
        edge_type_matrix = torch.LongTensor(8*np.ones((length, 1, 1), dtype=np.int64)).to(self.device)
        edge_input = torch.LongTensor(8*np.ones((length, 1, 1, 1), dtype=np.int64)).to(self.device)

        logits = self.ner_model(**encoded_input,
                                    node_position_ids = node_position_ids,
                                    spatial_pos = spatial_pos, 
                                    in_degree = in_degree, 
                                    out_degree = out_degree,
                                    edge_type_matrix = edge_type_matrix,
                                    edge_input = edge_input,)[0]

        ner_labels = torch.argmax(logits, dim=-1)
        if len(address) == 1:
            ner_labels = ner_labels.unsqueeze(0)

        output = []
        tmp = {1:'省', 2:'市', 3:'区', 4:'街道/镇', 5:'道路', 6:'道路号', 7:'poi', 8:'楼栋号', 9:'单元号', 10:'门牌号'}
        for i in range(len(address)):
            ner_label = ner_labels[i]
            word_id = word_ids[i]
            idx = torch.where(attention_mask[i]>0)
            ner_label = ner_label[idx][1:-1]
            word_id = word_id[idx][1:-1]
            
            addr_dict = {}
            addr_dict = dict.fromkeys(tmp.values(),'无')
            for j in range(1,11):
                idx = torch.where(ner_label == j)
                addr_dict[tmp[j]] = ''.join(tokenizer.decode(word_id[idx]).replace(' ',''))

            output.append(deepcopy(addr_dict))
            
        return output 

    # House Info Extraction
    def house_info(self, address):
        tokenizer = BertTokenizer.from_pretrained('nghuyong/ernie-3.0-base-zh')
        encoded_input = tokenizer(address, return_tensors='pt', padding='max_length',
                                truncation=True,  # 超过最大长度截断
                                max_length=60,
                                add_special_tokens=True).to(self.device)
        word_ids = encoded_input['input_ids']
        attention_mask = encoded_input['attention_mask']

        length = len(word_ids)
        node_position_ids = torch.tensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
        spatial_pos = torch.LongTensor(np.zeros((length, 1, 1), dtype=np.int64)).to(self.device)
        in_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
        out_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
        edge_type_matrix = torch.LongTensor(8*np.ones((length, 1, 1), dtype=np.int64)).to(self.device)
        edge_input = torch.LongTensor(8*np.ones((length, 1, 1, 1), dtype=np.int64)).to(self.device)

        logits = self.ner_model(**encoded_input,
                                    node_position_ids = node_position_ids,
                                    spatial_pos = spatial_pos, 
                                    in_degree = in_degree, 
                                    out_degree = out_degree,
                                    edge_type_matrix = edge_type_matrix,
                                    edge_input = edge_input,)[0]

        ner_labels = torch.argmax(logits, dim=-1)
        if len(address) == 1:
            ner_labels = ner_labels.unsqueeze(0)
        output = []
        for i in range(len(address)):
            ner_label = ner_labels[i]
            word_id = word_ids[i]
            idx = torch.where(attention_mask[i]>0)
            ner_label = ner_label[idx][1:-1]
            word_id = word_id[idx][1:-1]

            building = []
            unit = []
            room = []
            for j in range(len(ner_label)):
                if ner_label[j] == 8:
                    building.append(word_id[j])
                elif ner_label[j] == 9:
                    unit.append(word_id[j])
                elif ner_label[j] == 10:
                    room.append(word_id[j])

            output.append({'楼栋':tokenizer.decode(building).replace(' ',''), '单元':tokenizer.decode(unit).replace(' ',''),  
                '门牌号': tokenizer.decode(room).replace(' ','')})
        return output
                

    # Address Completion
    def addr_complet(self, address):
        tokenizer = BertTokenizer.from_pretrained('nghuyong/ernie-3.0-base-zh')
        encoded_input = tokenizer(address, return_tensors='pt', padding='max_length',
                                truncation=True,  # 超过最大长度截断
                                max_length=60,
                                add_special_tokens=True).to(self.device)
        word_ids = encoded_input['input_ids']
        attention_mask = encoded_input['attention_mask']

        length = len(word_ids)
        node_position_ids = torch.tensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
        spatial_pos = torch.LongTensor(np.zeros((length, 1, 1), dtype=np.int64)).to(self.device)
        in_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
        out_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device)
        edge_type_matrix = torch.LongTensor(8*np.ones((length, 1, 1), dtype=np.int64)).to(self.device)
        edge_input = torch.LongTensor(8*np.ones((length, 1, 1, 1), dtype=np.int64)).to(self.device)

        logits = self.ner_model(**encoded_input,
                                    node_position_ids = node_position_ids,
                                    spatial_pos = spatial_pos, 
                                    in_degree = in_degree, 
                                    out_degree = out_degree,
                                    edge_type_matrix = edge_type_matrix,
                                    edge_input = edge_input,)[0]

        ner_labels = torch.argmax(logits, dim=-1)
        if len(address) == 1:
            ner_labels = ner_labels.unsqueeze(0)
        if isinstance(address, list):
            address = address[0]

        # HTC result
        g2ptl_model = AutoModel.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True)
        g2ptl_model.eval()
        g2ptl_output = g2ptl_model(**encoded_input)
        htc_layer_out = g2ptl_output.htc_layer_out
        arr = g2ptl_model.get_htc_code(htc_layer_out)
        htc_pred = '{:02d}{:02d}{:02d}{:01d}{:02d}'.format(arr[0], arr[1], arr[2], arr[3], arr[4])
        with open('remap_code_2_chn_with_all_htc.pkl', 'rb') as fr:
            remap_code_2_chn = pickle.loads(fr.read())
        
        try:
            htc_list = remap_code_2_chn[htc_pred][-1]
        except:
            return address

        # revise address level of four city
        if htc_list[0] in ['北京','上海','重庆','天津']:
            htc_list = htc_list[1:]
            htc_list.append('')
        
        idx = torch.where(attention_mask>0)
        ner_label = ner_labels[idx][1:-1].cpu().numpy().tolist()
        word_id = word_ids[idx][1:-1]
        
        for i in range(1,5):
            # judge the lacked address unit
            if i not in ner_label:
                if i == 1:
                    address = htc_list[0] + address
                    ner_label = [1] * len(htc_list[0]) + ner_label
                else :
                    # find the insert position
                    idx = 0
                    for j in range(len(ner_label)):
                        if ner_label[j] > i:
                            idx = j
                            break
                    address = address[:idx] + htc_list[i-1] + address[idx:]
                    ner_label = ner_label[:idx] + [i] * len(htc_list[i-1]) + ner_label[idx:]

        return address

    # Geo-locating from text to geospatial
    def geolocate(self, address):
        g2ptl_model = AutoModel.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True)
        tokenizer = AutoTokenizer.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True)
        encoded_input = tokenizer(address, return_tensors='pt')

        g2ptl_model.eval()
        output = g2ptl_model(**encoded_input)
        geo_labels = torch.argmax(output.gc_layer_out, dim=-1)
        output = [s2_label_dict_remap[int(i)] for i in geo_labels]

        return 's2网格化结果:' + ''.join(output)

    # Pick-up Estimation Time of Arrival
    def pickup_ETA(self, address):
        print('Users can get the address embeddings using model.encode(address) and feed them to your own ETA model.')
    
    # Pick-up and Delivery Route Prediction
    def route_predict(self, route_data):
        print('Users can get the address embeddings using model.encode(address) and feed them to your own Route Prediction model.')

    # Address embeddings
    def encode(self, address):
        tokenizer = AutoTokenizer.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True)
        g2ptl_model = AutoModel.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True)
        encoded_input = tokenizer(address, return_tensors='pt', padding='max_length',
                                truncation=True,  # 超过最大长度截断
                                max_length=60,
                                add_special_tokens=True)
        g2ptl_model.eval()
        output = g2ptl_model(**encoded_input)

        return output.final_hidden_state

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                xavier_uniform_(p)

    def generate_square_subsequent_mask(self, sz):
        mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
        mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
        return mask  # [sz,sz]

    def save_weights(self, path):
        torch.save(self.state_dict(), path)

    def load_weights(self, path):
        self.load_state_dict(torch.load(path, map_location=torch.device('cpu')), False)

    def set_pretrained_weights(self, path):
        pre_train_weights = torch.load(path, map_location=torch.device('cpu'))
        new_weights = dict()

        for layer in self.state_dict().keys():
            if layer == 'embedding.position_ids':
                new_weights[layer] = pre_train_weights['ernie_model.embeddings.position_ids']
            elif layer == 'embedding.word_embeddings.weight':
                new_weights[layer] = pre_train_weights['ernie_model.embeddings.word_embeddings.weight']
            elif layer == 'embedding.position_embeddings.weight':
                new_weights[layer] = pre_train_weights['ernie_model.embeddings.position_embeddings.weight']
            elif layer == 'embedding.token_type_embeddings.weight':
                new_weights[layer] = pre_train_weights['ernie_model.embeddings.token_type_embeddings.weight']
            elif layer == 'embedding.task_type_embeddings.weight':
                new_weights[layer] = pre_train_weights['ernie_model.embeddings.task_type_embeddings.weight']
            elif layer == 'embedding.LayerNorm.weight':
                new_weights[layer] = pre_train_weights['ernie_model.embeddings.LayerNorm.weight']
            elif layer == 'embedding.LayerNorm.bias':
                new_weights[layer] = pre_train_weights['ernie_model.embeddings.LayerNorm.bias']
            elif 'stellar_model' in layer:
                new_weights[layer] = pre_train_weights[layer.replace('stellar_model', 'ernie_model')]
            elif layer in pre_train_weights.keys():
                new_weights[layer] = pre_train_weights[layer]
            else:
                new_weights[layer] = self.state_dict()[layer]

        self.load_state_dict(new_weights)