File size: 6,842 Bytes
c08e521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#! python3
# -*- encoding: utf-8 -*-

import torch
import torch.nn.functional as F
import pandas as pd
import sys
import os

from transformers.utils.hub import cached_file

resolved_module_file = cached_file(
    'Cainiao-AI/TAAS', 
    'htc_mask_dict_old.pkl'
)

htc_weights = [0.067, 0.133, 0.2, 0.267, 0.333]
htc_mask_dict = pd.read_pickle(resolved_module_file)
import numpy as np
import operator
def calculate_multi_htc_acc_batch(predicted_htc, y, sequence_len = 6):
    acc_cnt = np.array([0, 0, 0, 0, 0])
    y = y.view(-1, sequence_len, 5).tolist()
    predicted = np.array(predicted_htc).reshape(-1, sequence_len, 5).tolist()
    batch_size = len(y)
    total_cnt = np.array([0, 0, 0, 0, 0])
    for batch_i in range(batch_size):
        for index, s2 in enumerate(y[batch_i]):
            for c, i in enumerate(range(5)):
                y_l10 = y[batch_i][index][:i+1]
                p_l10 = predicted[batch_i][index][:i+1]
                if -100 in y_l10:
                    break
                
                if operator.eq(y_l10, p_l10):
                    acc_cnt[c] += 1
                total_cnt[c] += 1
        
    return acc_cnt, total_cnt
    

class HTCLoss(torch.nn.Module):
    def __init__(self, device, reduction='mean', using_htc = True):
        super(HTCLoss, self).__init__()
        self.reduction = reduction
        self.htc_weights = htc_weights
        self.device = device
        self.using_htc = using_htc
        self.htc_mask_dict = htc_mask_dict
        for key, value in self.htc_mask_dict.items():
            # self.htc_mask_dict[key] = torch.tensor(value).to(self.device)
            self.htc_mask_dict[key] = torch.tensor(value).clone().detach().to(self.device)

    def forward(self, logits, target):  # [bs,num_class]  CE=q*-log(p), q*log(1-p),p=softmax(logits)
        # target相关变量都在cuda上
        target = target.reshape(-1, 1)
        target_mask = target != -100
        target_mask = target_mask.squeeze()
        target_mask_idx = torch.where(target == -100)
        target_new = target.clone()
        target_new[target_mask_idx] = 0
        predict_res = []
        if not self.using_htc:
            log_pro = -1.0 * F.log_softmax(logits, dim=1)
            # one_hot = torch.zeros(logits.shape[0], logits.shape[1]).to(self.device)  # .cuda()
            # one_hot = one_hot.scatter_(1, target_new, 1)
            # loss = torch.mul(log_pro, one_hot).sum(dim=1)
            # loss = loss*target_mask
        else:
            # _, predicted = torch.max(logits[:, :32], 1)
            logits_reshaped = logits.clone() 
            logits_reshaped = logits_reshaped.reshape(-1, 5, 100) 
            _, aa_predicted = torch.max(logits_reshaped[:,0,1:32], 1) 
            aa_predicted += 1
            logits_new = -5 * torch.ones_like(logits_reshaped).to(self.device)
            logits_new[:,0,1:32] = logits_reshaped[:,0,1:32]
            for sample_idx, aa in enumerate(aa_predicted):
                bb_idx = htc_mask_dict['{:02d}'.format(aa)]
                _, bb_idy = torch.max(logits_reshaped[sample_idx,1,bb_idx], 0)
                bb = bb_idx[bb_idy]
                logits_new[sample_idx,1,bb_idx] = logits_reshaped[sample_idx,1,bb_idx]
                cc_idx = htc_mask_dict['{:02d}{:02d}'.format(aa, bb)]
                _, cc_idy = torch.max(logits_reshaped[sample_idx,2,cc_idx], 0)
                logits_new[sample_idx,2,cc_idx] = logits_reshaped[sample_idx,2,cc_idx]
                cc = cc_idx[cc_idy]
                d_idx = htc_mask_dict['{:02d}{:02d}{:02d}'.format(aa, bb, cc)]
                _, d_idy = torch.max(logits_reshaped[sample_idx,3,d_idx], 0)
                logits_new[sample_idx,3,d_idx] = logits_reshaped[sample_idx,3,d_idx]
                d = d_idx[d_idy]
                ee_idx = htc_mask_dict['{:02d}{:02d}{:02d}{:01d}'.format(aa, bb, cc, d)]
                _, ee_idy = torch.max(logits_reshaped[sample_idx,4,ee_idx], 0)
                logits_new[sample_idx,4,ee_idx] = logits_reshaped[sample_idx,4,ee_idx]
                ee = ee_idx[ee_idy]
                predict_res.extend([aa.item(), bb.item(), cc.item(), d.item(), ee.item()])
            # predicted = predicted.reshape(-1, 5)
            # aa = predicted[:, 0]
            # aa = ['{:02d}'.format(i) for i in aa]
            # bb_activate = [htc_mask_dict[i] for i in aa]
            logits_new = logits_new.reshape(-1, 100)
            log_pro = -1.0 * F.log_softmax(logits_new, dim=1)
        logits = logits.contiguous().view(-1, 100)
        one_hot = torch.zeros(logits.shape[0], logits.shape[1]).to(self.device)  # .cuda()
        one_hot = one_hot.scatter_(1, target_new, 1)
        loss = torch.mul(log_pro, one_hot).sum(dim=1)
        loss = loss*target_mask
        bs = int(loss.shape[0] / 5)
        w_loss = []
        for i in range(bs):
            w_loss.extend(self.htc_weights)
        w_loss = torch.FloatTensor(w_loss).to(self.device)
        loss = loss.mul(w_loss) * 5
        if self.reduction == 'mean':
            loss = loss[torch.where(loss>0)].mean()
        elif self.reduction == 'sum':
            loss = loss[torch.where(loss>0)].sum()
        return loss, predict_res

    def get_htc_code(self, logits):  # [bs,num_class]  CE=q*-log(p), q*log(1-p),p=softmax(logits)
        logits_reshaped = logits.clone() 
        logits_reshaped = logits_reshaped.reshape(-1, 5, 100) 
        _, aa_predicted = torch.max(logits_reshaped[:,0,1:32], 1) 
        aa_predicted += 1
        logits_new = -5 * torch.ones_like(logits_reshaped).to(self.device)
        logits_new[:,0,1:32] = logits_reshaped[:,0,1:32]
        predict_res = []
        for sample_idx, aa in enumerate(aa_predicted):
            bb_idx = htc_mask_dict['{:02d}'.format(aa)]
            _, bb_idy = torch.max(logits_reshaped[sample_idx,1,bb_idx], 0)
            bb = bb_idx[bb_idy]
            logits_new[sample_idx,1,bb_idx] = logits_reshaped[sample_idx,1,bb_idx]
            cc_idx = htc_mask_dict['{:02d}{:02d}'.format(aa, bb)]
            _, cc_idy = torch.max(logits_reshaped[sample_idx,2,cc_idx], 0)
            logits_new[sample_idx,2,cc_idx] = logits_reshaped[sample_idx,2,cc_idx]
            cc = cc_idx[cc_idy]
            d_idx = htc_mask_dict['{:02d}{:02d}{:02d}'.format(aa, bb, cc)]
            _, d_idy = torch.max(logits_reshaped[sample_idx,3,d_idx], 0)
            logits_new[sample_idx,3,d_idx] = logits_reshaped[sample_idx,3,d_idx]
            d = d_idx[d_idy]
            ee_idx = htc_mask_dict['{:02d}{:02d}{:02d}{:01d}'.format(aa, bb, cc, d)]
            _, ee_idy = torch.max(logits_reshaped[sample_idx,4,ee_idx], 0)
            logits_new[sample_idx,4,ee_idx] = logits_reshaped[sample_idx,4,ee_idx]
            ee = ee_idx[ee_idy]
            predict_res.extend([aa.item(), bb.item(), cc.item(), d.item(), ee.item()])
        return predict_res