|
|
|
|
|
|
|
from transformers.models.ernie.modeling_ernie import * |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from transformers.utils import logging |
|
import inspect |
|
from typing import Set, Any, Callable, Dict, Iterable, List, Mapping, Optional, Tuple, Union |
|
import re |
|
import math |
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
from fairseq import utils |
|
from fairseq.modules.fairseq_dropout import FairseqDropout |
|
from fairseq.modules.quant_noise import quant_noise |
|
from torch import Tensor, nn |
|
from torch.hub import load_state_dict_from_url |
|
import torch.distributed as dist |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
from torch.hub import load_state_dict_from_url |
|
import torch.distributed as dist |
|
|
|
PRETRAINED_MODEL_URLS = { |
|
"pcqm4mv1_graphormer_base":"https://ml2md.blob.core.windows.net/graphormer-ckpts/checkpoint_best_pcqm4mv1.pt", |
|
"pcqm4mv2_graphormer_base":"https://ml2md.blob.core.windows.net/graphormer-ckpts/checkpoint_best_pcqm4mv2.pt", |
|
"oc20is2re_graphormer3d_base":"https://szheng.blob.core.windows.net/graphormer/modelzoo/oc20is2re/checkpoint_last_oc20_is2re.pt", |
|
"pcqm4mv1_graphormer_base_for_molhiv":"https://ml2md.blob.core.windows.net/graphormer-ckpts/checkpoint_base_preln_pcqm4mv1_for_hiv.pt", |
|
} |
|
|
|
def load_pretrained_model(pretrained_model_name): |
|
if pretrained_model_name not in PRETRAINED_MODEL_URLS: |
|
raise ValueError("Unknown pretrained model name %s", pretrained_model_name) |
|
if not dist.is_initialized(): |
|
return load_state_dict_from_url(PRETRAINED_MODEL_URLS[pretrained_model_name], progress=True)["model"] |
|
else: |
|
pretrained_model = load_state_dict_from_url(PRETRAINED_MODEL_URLS[pretrained_model_name], progress=True, file_name=f"{pretrained_model_name}_{dist.get_rank()}")["model"] |
|
dist.barrier() |
|
return pretrained_model |
|
|
|
|
|
class MultiheadAttention(nn.Module): |
|
"""Multi-headed attention. |
|
|
|
See "Attention Is All You Need" for more details. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim, |
|
num_heads, |
|
kdim=None, |
|
vdim=None, |
|
dropout=0.0, |
|
bias=True, |
|
self_attention=False, |
|
q_noise=0.0, |
|
qn_block_size=8, |
|
): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.kdim = kdim if kdim is not None else embed_dim |
|
self.vdim = vdim if vdim is not None else embed_dim |
|
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim |
|
|
|
self.num_heads = num_heads |
|
self.dropout_module = FairseqDropout( |
|
dropout, module_name=self.__class__.__name__ |
|
) |
|
|
|
self.head_dim = embed_dim // num_heads |
|
assert ( |
|
self.head_dim * num_heads == self.embed_dim |
|
), "embed_dim must be divisible by num_heads" |
|
self.scaling = self.head_dim ** -0.5 |
|
|
|
self.self_attention = self_attention |
|
|
|
assert self.self_attention, "Only support self attention" |
|
|
|
assert not self.self_attention or self.qkv_same_dim, ( |
|
"Self-attention requires query, key and " "value to be of the same size" |
|
) |
|
|
|
self.k_proj = quant_noise( |
|
nn.Linear(self.kdim, embed_dim, bias=bias), q_noise, qn_block_size |
|
) |
|
self.v_proj = quant_noise( |
|
nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size |
|
) |
|
self.q_proj = quant_noise( |
|
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size |
|
) |
|
|
|
self.out_proj = quant_noise( |
|
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size |
|
) |
|
|
|
self.reset_parameters() |
|
|
|
self.onnx_trace = False |
|
|
|
def prepare_for_onnx_export_(self): |
|
raise NotImplementedError |
|
|
|
def reset_parameters(self): |
|
if self.qkv_same_dim: |
|
|
|
|
|
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) |
|
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) |
|
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) |
|
else: |
|
nn.init.xavier_uniform_(self.k_proj.weight) |
|
nn.init.xavier_uniform_(self.v_proj.weight) |
|
nn.init.xavier_uniform_(self.q_proj.weight) |
|
|
|
nn.init.xavier_uniform_(self.out_proj.weight) |
|
if self.out_proj.bias is not None: |
|
nn.init.constant_(self.out_proj.bias, 0.0) |
|
|
|
def forward( |
|
self, |
|
query, |
|
key: Optional[Tensor], |
|
value: Optional[Tensor], |
|
attn_bias: Optional[Tensor], |
|
key_padding_mask: Optional[Tensor] = None, |
|
need_weights: bool = True, |
|
attn_mask: Optional[Tensor] = None, |
|
before_softmax: bool = False, |
|
need_head_weights: bool = False, |
|
) -> Tuple[Tensor, Optional[Tensor]]: |
|
"""Input shape: Time x Batch x Channel |
|
|
|
Args: |
|
key_padding_mask (ByteTensor, optional): mask to exclude |
|
keys that are pads, of shape `(batch, src_len)`, where |
|
padding elements are indicated by 1s. |
|
need_weights (bool, optional): return the attention weights, |
|
averaged over heads (default: False). |
|
attn_mask (ByteTensor, optional): typically used to |
|
implement causal attention, where the mask prevents the |
|
attention from looking forward in time (default: None). |
|
before_softmax (bool, optional): return the raw attention |
|
weights and values before the attention softmax. |
|
need_head_weights (bool, optional): return the attention |
|
weights for each head. Implies *need_weights*. Default: |
|
return the average attention weights over all heads. |
|
""" |
|
if need_head_weights: |
|
need_weights = True |
|
|
|
tgt_len, bsz, embed_dim = query.size() |
|
src_len = tgt_len |
|
assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}" |
|
assert list(query.size()) == [tgt_len, bsz, embed_dim] |
|
if key is not None: |
|
src_len, key_bsz, _ = key.size() |
|
if not torch.jit.is_scripting(): |
|
assert key_bsz == bsz |
|
assert value is not None |
|
assert src_len, bsz == value.shape[:2] |
|
|
|
q = self.q_proj(query) |
|
k = self.k_proj(query) |
|
v = self.v_proj(query) |
|
q *= self.scaling |
|
|
|
q = ( |
|
q.contiguous() |
|
.view(tgt_len, bsz * self.num_heads, self.head_dim) |
|
.transpose(0, 1) |
|
) |
|
if k is not None: |
|
k = ( |
|
k.contiguous() |
|
.view(-1, bsz * self.num_heads, self.head_dim) |
|
.transpose(0, 1) |
|
) |
|
if v is not None: |
|
v = ( |
|
v.contiguous() |
|
.view(-1, bsz * self.num_heads, self.head_dim) |
|
.transpose(0, 1) |
|
) |
|
|
|
assert k is not None |
|
assert k.size(1) == src_len |
|
|
|
|
|
|
|
if key_padding_mask is not None and key_padding_mask.dim() == 0: |
|
key_padding_mask = None |
|
|
|
if key_padding_mask is not None: |
|
assert key_padding_mask.size(0) == bsz |
|
assert key_padding_mask.size(1) == src_len |
|
attn_weights = torch.bmm(q, k.transpose(1, 2)) |
|
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) |
|
|
|
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] |
|
|
|
if attn_bias is not None: |
|
attn_weights += attn_bias.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
if attn_mask is not None: |
|
attn_mask = attn_mask.unsqueeze(0) |
|
attn_weights += attn_mask |
|
|
|
if key_padding_mask is not None: |
|
|
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights.masked_fill( |
|
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), |
|
float("-inf"), |
|
) |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
if before_softmax: |
|
return attn_weights, v |
|
|
|
attn_weights_float = utils.softmax( |
|
attn_weights, dim=-1, onnx_trace=self.onnx_trace |
|
) |
|
attn_weights = attn_weights_float.type_as(attn_weights) |
|
attn_probs = self.dropout_module(attn_weights) |
|
|
|
assert v is not None |
|
attn = torch.bmm(attn_probs, v) |
|
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] |
|
|
|
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) |
|
attn = self.out_proj(attn) |
|
|
|
attn_weights: Optional[Tensor] = None |
|
if need_weights: |
|
attn_weights = attn_weights_float.view( |
|
bsz, self.num_heads, tgt_len, src_len |
|
).transpose(1, 0) |
|
if not need_head_weights: |
|
|
|
attn_weights = attn_weights.mean(dim=0) |
|
|
|
return attn, attn_weights |
|
|
|
def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int): |
|
return attn_weights |
|
|
|
def upgrade_state_dict_named(self, state_dict, name): |
|
prefix = name + "." if name != "" else "" |
|
items_to_add = {} |
|
keys_to_remove = [] |
|
for k in state_dict.keys(): |
|
if k.endswith(prefix + "in_proj_weight"): |
|
|
|
dim = int(state_dict[k].shape[0] / 3) |
|
items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim] |
|
items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim] |
|
items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :] |
|
|
|
keys_to_remove.append(k) |
|
|
|
k_bias = prefix + "in_proj_bias" |
|
if k_bias in state_dict.keys(): |
|
dim = int(state_dict[k].shape[0] / 3) |
|
items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim] |
|
items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][ |
|
dim : 2 * dim |
|
] |
|
items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :] |
|
|
|
keys_to_remove.append(prefix + "in_proj_bias") |
|
|
|
for k in keys_to_remove: |
|
del state_dict[k] |
|
|
|
for key, value in items_to_add.items(): |
|
state_dict[key] = value |
|
|
|
|
|
def init_graphormer_params(module): |
|
""" |
|
Initialize the weights specific to the Graphormer Model. |
|
""" |
|
|
|
def normal_(data): |
|
|
|
|
|
data.copy_(data.cpu().normal_(mean=0.0, std=0.02).to(data.device)) |
|
|
|
if isinstance(module, nn.Linear): |
|
normal_(module.weight.data) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
if isinstance(module, nn.Embedding): |
|
normal_(module.weight.data) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
if isinstance(module, MultiheadAttention): |
|
normal_(module.q_proj.weight.data) |
|
normal_(module.k_proj.weight.data) |
|
normal_(module.v_proj.weight.data) |
|
|
|
|
|
|
|
|
|
def add_start_docstrings(*docstr): |
|
def docstring_decorator(fn): |
|
fn.__doc__ = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "") |
|
return fn |
|
|
|
return docstring_decorator |
|
|
|
|
|
def add_start_docstrings_to_model_forward(*docstr): |
|
def docstring_decorator(fn): |
|
docstring = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "") |
|
class_name = f"[`{fn.__qualname__.split('.')[0]}`]" |
|
intro = f" The {class_name} forward method, overrides the `__call__` special method." |
|
note = r""" |
|
|
|
<Tip> |
|
|
|
Although the recipe for forward pass needs to be defined within this function, one should call the [`Module`] |
|
instance afterwards instead of this since the former takes care of running the pre and post processing steps while |
|
the latter silently ignores them. |
|
|
|
</Tip> |
|
""" |
|
|
|
fn.__doc__ = intro + note + docstring |
|
return fn |
|
|
|
return docstring_decorator |
|
|
|
|
|
def add_end_docstrings(*docstr): |
|
def docstring_decorator(fn): |
|
fn.__doc__ = (fn.__doc__ if fn.__doc__ is not None else "") + "".join(docstr) |
|
return fn |
|
|
|
return docstring_decorator |
|
|
|
|
|
PT_RETURN_INTRODUCTION = r""" |
|
Returns: |
|
[`{full_output_type}`] or `tuple(torch.FloatTensor)`: A [`{full_output_type}`] or a tuple of |
|
`torch.FloatTensor` (if `return_dict=False` is passed or when `config.return_dict=False`) comprising various |
|
elements depending on the configuration ([`{config_class}`]) and inputs. |
|
|
|
""" |
|
|
|
TF_RETURN_INTRODUCTION = r""" |
|
Returns: |
|
[`{full_output_type}`] or `tuple(tf.Tensor)`: A [`{full_output_type}`] or a tuple of `tf.Tensor` (if |
|
`return_dict=False` is passed or when `config.return_dict=False`) comprising various elements depending on the |
|
configuration ([`{config_class}`]) and inputs. |
|
|
|
""" |
|
|
|
|
|
def _get_indent(t): |
|
"""Returns the indentation in the first line of t""" |
|
search = re.search(r"^(\s*)\S", t) |
|
return "" if search is None else search.groups()[0] |
|
|
|
|
|
def _convert_output_args_doc(output_args_doc): |
|
"""Convert output_args_doc to display properly.""" |
|
|
|
indent = _get_indent(output_args_doc) |
|
blocks = [] |
|
current_block = "" |
|
for line in output_args_doc.split("\n"): |
|
|
|
if _get_indent(line) == indent: |
|
if len(current_block) > 0: |
|
blocks.append(current_block[:-1]) |
|
current_block = f"{line}\n" |
|
else: |
|
|
|
|
|
current_block += f"{line[2:]}\n" |
|
blocks.append(current_block[:-1]) |
|
|
|
|
|
for i in range(len(blocks)): |
|
blocks[i] = re.sub(r"^(\s+)(\S+)(\s+)", r"\1- **\2**\3", blocks[i]) |
|
blocks[i] = re.sub(r":\s*\n\s*(\S)", r" -- \1", blocks[i]) |
|
|
|
return "\n".join(blocks) |
|
|
|
|
|
def _prepare_output_docstrings(output_type, config_class, min_indent=None): |
|
""" |
|
Prepares the return part of the docstring using `output_type`. |
|
""" |
|
output_docstring = output_type.__doc__ |
|
|
|
|
|
lines = output_docstring.split("\n") |
|
i = 0 |
|
while i < len(lines) and re.search(r"^\s*(Args|Parameters):\s*$", lines[i]) is None: |
|
i += 1 |
|
if i < len(lines): |
|
params_docstring = "\n".join(lines[(i + 1):]) |
|
params_docstring = _convert_output_args_doc(params_docstring) |
|
|
|
|
|
full_output_type = f"{output_type.__module__}.{output_type.__name__}" |
|
intro = TF_RETURN_INTRODUCTION if output_type.__name__.startswith("TF") else PT_RETURN_INTRODUCTION |
|
intro = intro.format(full_output_type=full_output_type, config_class=config_class) |
|
result = intro + params_docstring |
|
|
|
|
|
if min_indent is not None: |
|
lines = result.split("\n") |
|
|
|
i = 0 |
|
while len(lines[i]) == 0: |
|
i += 1 |
|
indent = len(_get_indent(lines[i])) |
|
|
|
if indent < min_indent: |
|
to_add = " " * (min_indent - indent) |
|
lines = [(f"{to_add}{line}" if len(line) > 0 else line) for line in lines] |
|
result = "\n".join(lines) |
|
|
|
return result |
|
|
|
|
|
PT_TOKEN_CLASSIFICATION_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
>>> import torch |
|
|
|
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer( |
|
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt" |
|
... ) |
|
|
|
>>> with torch.no_grad(): |
|
... logits = model(**inputs).logits |
|
|
|
>>> predicted_token_class_ids = logits.argmax(-1) |
|
|
|
>>> # Note that tokens are classified rather then input words which means that |
|
>>> # there might be more predicted token classes than words. |
|
>>> # Multiple token classes might account for the same word |
|
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]] |
|
>>> predicted_tokens_classes |
|
{expected_output} |
|
``` |
|
|
|
```python |
|
>>> labels = predicted_token_class_ids |
|
>>> loss = model(**inputs, labels=labels).loss |
|
>>> round(loss.item(), 2) |
|
{expected_loss} |
|
``` |
|
""" |
|
|
|
PT_QUESTION_ANSWERING_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
>>> import torch |
|
|
|
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" |
|
|
|
>>> inputs = tokenizer(question, text, return_tensors="pt") |
|
>>> with torch.no_grad(): |
|
... outputs = model(**inputs) |
|
|
|
>>> answer_start_index = outputs.start_logits.argmax() |
|
>>> answer_end_index = outputs.end_logits.argmax() |
|
|
|
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1] |
|
>>> tokenizer.decode(predict_answer_tokens) |
|
{expected_output} |
|
``` |
|
|
|
```python |
|
>>> # target is "nice puppet" |
|
>>> target_start_index = torch.tensor([{qa_target_start_index}]) |
|
>>> target_end_index = torch.tensor([{qa_target_end_index}]) |
|
|
|
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index) |
|
>>> loss = outputs.loss |
|
>>> round(loss.item(), 2) |
|
{expected_loss} |
|
``` |
|
""" |
|
|
|
PT_SEQUENCE_CLASSIFICATION_SAMPLE = r""" |
|
Example of single-label classification: |
|
|
|
```python |
|
>>> import torch |
|
>>> from transformers import {processor_class}, {model_class} |
|
|
|
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") |
|
|
|
>>> with torch.no_grad(): |
|
... logits = model(**inputs).logits |
|
|
|
>>> predicted_class_id = logits.argmax().item() |
|
>>> model.config.id2label[predicted_class_id] |
|
{expected_output} |
|
``` |
|
|
|
```python |
|
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` |
|
>>> num_labels = len(model.config.id2label) |
|
>>> model = {model_class}.from_pretrained("{checkpoint}", num_labels=num_labels) |
|
|
|
>>> labels = torch.tensor([1]) |
|
>>> loss = model(**inputs, labels=labels).loss |
|
>>> round(loss.item(), 2) |
|
{expected_loss} |
|
``` |
|
|
|
Example of multi-label classification: |
|
|
|
```python |
|
>>> import torch |
|
>>> from transformers import {processor_class}, {model_class} |
|
|
|
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}", problem_type="multi_label_classification") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") |
|
|
|
>>> with torch.no_grad(): |
|
... logits = model(**inputs).logits |
|
|
|
>>> predicted_class_id = logits.argmax().item() |
|
>>> model.config.id2label[predicted_class_id] |
|
{expected_output} |
|
``` |
|
|
|
```python |
|
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` |
|
>>> num_labels = len(model.config.id2label) |
|
>>> model = {model_class}.from_pretrained( |
|
... "{checkpoint}", num_labels=num_labels, problem_type="multi_label_classification" |
|
... ) |
|
|
|
>>> labels = torch.nn.functional.one_hot(torch.tensor([predicted_class_id]), num_classes=num_labels).to( |
|
... torch.float |
|
... ) |
|
>>> loss = model(**inputs, labels=labels).loss |
|
>>> loss.backward() # doctest: +IGNORE_RESULT |
|
``` |
|
""" |
|
|
|
PT_MASKED_LM_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
>>> import torch |
|
|
|
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="pt") |
|
|
|
>>> with torch.no_grad(): |
|
... logits = model(**inputs).logits |
|
|
|
>>> # retrieve index of {mask} |
|
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] |
|
|
|
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1) |
|
>>> tokenizer.decode(predicted_token_id) |
|
{expected_output} |
|
``` |
|
|
|
```python |
|
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"] |
|
>>> # mask labels of non-{mask} tokens |
|
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) |
|
|
|
>>> outputs = model(**inputs, labels=labels) |
|
>>> round(outputs.loss.item(), 2) |
|
{expected_loss} |
|
``` |
|
""" |
|
|
|
PT_BASE_MODEL_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
>>> import torch |
|
|
|
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
|
|
>>> last_hidden_states = outputs.last_hidden_state |
|
``` |
|
""" |
|
|
|
PT_MULTIPLE_CHOICE_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
>>> import torch |
|
|
|
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." |
|
>>> choice0 = "It is eaten with a fork and a knife." |
|
>>> choice1 = "It is eaten while held in the hand." |
|
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1 |
|
|
|
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True) |
|
>>> outputs = model(**{{k: v.unsqueeze(0) for k, v in encoding.items()}}, labels=labels) # batch size is 1 |
|
|
|
>>> # the linear classifier still needs to be trained |
|
>>> loss = outputs.loss |
|
>>> logits = outputs.logits |
|
``` |
|
""" |
|
|
|
PT_CAUSAL_LM_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> import torch |
|
>>> from transformers import {processor_class}, {model_class} |
|
|
|
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") |
|
>>> outputs = model(**inputs, labels=inputs["input_ids"]) |
|
>>> loss = outputs.loss |
|
>>> logits = outputs.logits |
|
``` |
|
""" |
|
|
|
PT_SPEECH_BASE_MODEL_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
>>> import torch |
|
>>> from datasets import load_dataset |
|
|
|
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") |
|
>>> dataset = dataset.sort("id") |
|
>>> sampling_rate = dataset.features["audio"].sampling_rate |
|
|
|
>>> processor = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> # audio file is decoded on the fly |
|
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") |
|
>>> with torch.no_grad(): |
|
... outputs = model(**inputs) |
|
|
|
>>> last_hidden_states = outputs.last_hidden_state |
|
>>> list(last_hidden_states.shape) |
|
{expected_output} |
|
``` |
|
""" |
|
|
|
PT_SPEECH_CTC_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
>>> from datasets import load_dataset |
|
>>> import torch |
|
|
|
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") |
|
>>> dataset = dataset.sort("id") |
|
>>> sampling_rate = dataset.features["audio"].sampling_rate |
|
|
|
>>> processor = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> # audio file is decoded on the fly |
|
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") |
|
>>> with torch.no_grad(): |
|
... logits = model(**inputs).logits |
|
>>> predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
>>> # transcribe speech |
|
>>> transcription = processor.batch_decode(predicted_ids) |
|
>>> transcription[0] |
|
{expected_output} |
|
``` |
|
|
|
```python |
|
>>> inputs["labels"] = processor(text=dataset[0]["text"], return_tensors="pt").input_ids |
|
|
|
>>> # compute loss |
|
>>> loss = model(**inputs).loss |
|
>>> round(loss.item(), 2) |
|
{expected_loss} |
|
``` |
|
""" |
|
|
|
PT_SPEECH_SEQ_CLASS_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
>>> from datasets import load_dataset |
|
>>> import torch |
|
|
|
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") |
|
>>> dataset = dataset.sort("id") |
|
>>> sampling_rate = dataset.features["audio"].sampling_rate |
|
|
|
>>> feature_extractor = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> # audio file is decoded on the fly |
|
>>> inputs = feature_extractor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") |
|
|
|
>>> with torch.no_grad(): |
|
... logits = model(**inputs).logits |
|
|
|
>>> predicted_class_ids = torch.argmax(logits, dim=-1).item() |
|
>>> predicted_label = model.config.id2label[predicted_class_ids] |
|
>>> predicted_label |
|
{expected_output} |
|
``` |
|
|
|
```python |
|
>>> # compute loss - target_label is e.g. "down" |
|
>>> target_label = model.config.id2label[0] |
|
>>> inputs["labels"] = torch.tensor([model.config.label2id[target_label]]) |
|
>>> loss = model(**inputs).loss |
|
>>> round(loss.item(), 2) |
|
{expected_loss} |
|
``` |
|
""" |
|
|
|
PT_SPEECH_FRAME_CLASS_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
>>> from datasets import load_dataset |
|
>>> import torch |
|
|
|
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") |
|
>>> dataset = dataset.sort("id") |
|
>>> sampling_rate = dataset.features["audio"].sampling_rate |
|
|
|
>>> feature_extractor = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> # audio file is decoded on the fly |
|
>>> inputs = feature_extractor(dataset[0]["audio"]["array"], return_tensors="pt", sampling_rate=sampling_rate) |
|
>>> with torch.no_grad(): |
|
... logits = model(**inputs).logits |
|
|
|
>>> probabilities = torch.sigmoid(logits[0]) |
|
>>> # labels is a one-hot array of shape (num_frames, num_speakers) |
|
>>> labels = (probabilities > 0.5).long() |
|
>>> labels[0].tolist() |
|
{expected_output} |
|
``` |
|
""" |
|
|
|
PT_SPEECH_XVECTOR_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
>>> from datasets import load_dataset |
|
>>> import torch |
|
|
|
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") |
|
>>> dataset = dataset.sort("id") |
|
>>> sampling_rate = dataset.features["audio"].sampling_rate |
|
|
|
>>> feature_extractor = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> # audio file is decoded on the fly |
|
>>> inputs = feature_extractor( |
|
... [d["array"] for d in dataset[:2]["audio"]], sampling_rate=sampling_rate, return_tensors="pt", padding=True |
|
... ) |
|
>>> with torch.no_grad(): |
|
... embeddings = model(**inputs).embeddings |
|
|
|
>>> embeddings = torch.nn.functional.normalize(embeddings, dim=-1).cpu() |
|
|
|
>>> # the resulting embeddings can be used for cosine similarity-based retrieval |
|
>>> cosine_sim = torch.nn.CosineSimilarity(dim=-1) |
|
>>> similarity = cosine_sim(embeddings[0], embeddings[1]) |
|
>>> threshold = 0.7 # the optimal threshold is dataset-dependent |
|
>>> if similarity < threshold: |
|
... print("Speakers are not the same!") |
|
>>> round(similarity.item(), 2) |
|
{expected_output} |
|
``` |
|
""" |
|
|
|
PT_VISION_BASE_MODEL_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
>>> import torch |
|
>>> from datasets import load_dataset |
|
|
|
>>> dataset = load_dataset("huggingface/cats-image") |
|
>>> image = dataset["test"]["image"][0] |
|
|
|
>>> feature_extractor = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = feature_extractor(image, return_tensors="pt") |
|
|
|
>>> with torch.no_grad(): |
|
... outputs = model(**inputs) |
|
|
|
>>> last_hidden_states = outputs.last_hidden_state |
|
>>> list(last_hidden_states.shape) |
|
{expected_output} |
|
``` |
|
""" |
|
|
|
PT_VISION_SEQ_CLASS_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
>>> import torch |
|
>>> from datasets import load_dataset |
|
|
|
>>> dataset = load_dataset("huggingface/cats-image") |
|
>>> image = dataset["test"]["image"][0] |
|
|
|
>>> feature_extractor = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = feature_extractor(image, return_tensors="pt") |
|
|
|
>>> with torch.no_grad(): |
|
... logits = model(**inputs).logits |
|
|
|
>>> # model predicts one of the 1000 ImageNet classes |
|
>>> predicted_label = logits.argmax(-1).item() |
|
>>> print(model.config.id2label[predicted_label]) |
|
{expected_output} |
|
``` |
|
""" |
|
|
|
PT_SAMPLE_DOCSTRINGS = { |
|
"SequenceClassification": PT_SEQUENCE_CLASSIFICATION_SAMPLE, |
|
"QuestionAnswering": PT_QUESTION_ANSWERING_SAMPLE, |
|
"TokenClassification": PT_TOKEN_CLASSIFICATION_SAMPLE, |
|
"MultipleChoice": PT_MULTIPLE_CHOICE_SAMPLE, |
|
"MaskedLM": PT_MASKED_LM_SAMPLE, |
|
"LMHead": PT_CAUSAL_LM_SAMPLE, |
|
"BaseModel": PT_BASE_MODEL_SAMPLE, |
|
"SpeechBaseModel": PT_SPEECH_BASE_MODEL_SAMPLE, |
|
"CTC": PT_SPEECH_CTC_SAMPLE, |
|
"AudioClassification": PT_SPEECH_SEQ_CLASS_SAMPLE, |
|
"AudioFrameClassification": PT_SPEECH_FRAME_CLASS_SAMPLE, |
|
"AudioXVector": PT_SPEECH_XVECTOR_SAMPLE, |
|
"VisionBaseModel": PT_VISION_BASE_MODEL_SAMPLE, |
|
"ImageClassification": PT_VISION_SEQ_CLASS_SAMPLE, |
|
} |
|
|
|
TF_TOKEN_CLASSIFICATION_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
>>> import tensorflow as tf |
|
|
|
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer( |
|
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf" |
|
... ) |
|
|
|
>>> logits = model(**inputs).logits |
|
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1) |
|
|
|
>>> # Note that tokens are classified rather then input words which means that |
|
>>> # there might be more predicted token classes than words. |
|
>>> # Multiple token classes might account for the same word |
|
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()] |
|
>>> predicted_tokens_classes |
|
{expected_output} |
|
``` |
|
|
|
```python |
|
>>> labels = predicted_token_class_ids |
|
>>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss) |
|
>>> round(float(loss), 2) |
|
{expected_loss} |
|
``` |
|
""" |
|
|
|
TF_QUESTION_ANSWERING_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
>>> import tensorflow as tf |
|
|
|
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" |
|
|
|
>>> inputs = tokenizer(question, text, return_tensors="tf") |
|
>>> outputs = model(**inputs) |
|
|
|
>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0]) |
|
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0]) |
|
|
|
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1] |
|
>>> tokenizer.decode(predict_answer_tokens) |
|
{expected_output} |
|
``` |
|
|
|
```python |
|
>>> # target is "nice puppet" |
|
>>> target_start_index = tf.constant([{qa_target_start_index}]) |
|
>>> target_end_index = tf.constant([{qa_target_end_index}]) |
|
|
|
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index) |
|
>>> loss = tf.math.reduce_mean(outputs.loss) |
|
>>> round(float(loss), 2) |
|
{expected_loss} |
|
``` |
|
""" |
|
|
|
TF_SEQUENCE_CLASSIFICATION_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
>>> import tensorflow as tf |
|
|
|
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") |
|
|
|
>>> logits = model(**inputs).logits |
|
|
|
>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0]) |
|
>>> model.config.id2label[predicted_class_id] |
|
{expected_output} |
|
``` |
|
|
|
```python |
|
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` |
|
>>> num_labels = len(model.config.id2label) |
|
>>> model = {model_class}.from_pretrained("{checkpoint}", num_labels=num_labels) |
|
|
|
>>> labels = tf.constant(1) |
|
>>> loss = model(**inputs, labels=labels).loss |
|
>>> round(float(loss), 2) |
|
{expected_loss} |
|
``` |
|
""" |
|
|
|
TF_MASKED_LM_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
>>> import tensorflow as tf |
|
|
|
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="tf") |
|
>>> logits = model(**inputs).logits |
|
|
|
>>> # retrieve index of {mask} |
|
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0]) |
|
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index) |
|
|
|
>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1) |
|
>>> tokenizer.decode(predicted_token_id) |
|
{expected_output} |
|
``` |
|
|
|
```python |
|
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"] |
|
>>> # mask labels of non-{mask} tokens |
|
>>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) |
|
|
|
>>> outputs = model(**inputs, labels=labels) |
|
>>> round(float(outputs.loss), 2) |
|
{expected_loss} |
|
``` |
|
""" |
|
|
|
TF_BASE_MODEL_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
>>> import tensorflow as tf |
|
|
|
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") |
|
>>> outputs = model(inputs) |
|
|
|
>>> last_hidden_states = outputs.last_hidden_state |
|
``` |
|
""" |
|
|
|
TF_MULTIPLE_CHOICE_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
>>> import tensorflow as tf |
|
|
|
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." |
|
>>> choice0 = "It is eaten with a fork and a knife." |
|
>>> choice1 = "It is eaten while held in the hand." |
|
|
|
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True) |
|
>>> inputs = {{k: tf.expand_dims(v, 0) for k, v in encoding.items()}} |
|
>>> outputs = model(inputs) # batch size is 1 |
|
|
|
>>> # the linear classifier still needs to be trained |
|
>>> logits = outputs.logits |
|
``` |
|
""" |
|
|
|
TF_CAUSAL_LM_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
>>> import tensorflow as tf |
|
|
|
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") |
|
>>> outputs = model(inputs) |
|
>>> logits = outputs.logits |
|
``` |
|
""" |
|
|
|
TF_SPEECH_BASE_MODEL_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
>>> from datasets import load_dataset |
|
|
|
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") |
|
>>> dataset = dataset.sort("id") |
|
>>> sampling_rate = dataset.features["audio"].sampling_rate |
|
|
|
>>> processor = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> # audio file is decoded on the fly |
|
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="tf") |
|
>>> outputs = model(**inputs) |
|
|
|
>>> last_hidden_states = outputs.last_hidden_state |
|
>>> list(last_hidden_states.shape) |
|
{expected_output} |
|
``` |
|
""" |
|
|
|
TF_SPEECH_CTC_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
>>> from datasets import load_dataset |
|
>>> import tensorflow as tf |
|
|
|
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") |
|
>>> dataset = dataset.sort("id") |
|
>>> sampling_rate = dataset.features["audio"].sampling_rate |
|
|
|
>>> processor = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> # audio file is decoded on the fly |
|
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="tf") |
|
>>> logits = model(**inputs).logits |
|
>>> predicted_ids = tf.math.argmax(logits, axis=-1) |
|
|
|
>>> # transcribe speech |
|
>>> transcription = processor.batch_decode(predicted_ids) |
|
>>> transcription[0] |
|
{expected_output} |
|
``` |
|
|
|
```python |
|
>>> inputs["labels"] = processor(text=dataset[0]["text"], return_tensors="tf").input_ids |
|
|
|
>>> # compute loss |
|
>>> loss = model(**inputs).loss |
|
>>> round(float(loss), 2) |
|
{expected_loss} |
|
``` |
|
""" |
|
|
|
TF_VISION_BASE_MODEL_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
>>> from datasets import load_dataset |
|
|
|
>>> dataset = load_dataset("huggingface/cats-image") |
|
>>> image = dataset["test"]["image"][0] |
|
|
|
>>> feature_extractor = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = feature_extractor(image, return_tensors="tf") |
|
>>> outputs = model(**inputs) |
|
|
|
>>> last_hidden_states = outputs.last_hidden_state |
|
>>> list(last_hidden_states.shape) |
|
{expected_output} |
|
``` |
|
""" |
|
|
|
TF_VISION_SEQ_CLASS_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
>>> import tensorflow as tf |
|
>>> from datasets import load_dataset |
|
|
|
>>> dataset = load_dataset("huggingface/cats-image") |
|
>>> image = dataset["test"]["image"][0] |
|
|
|
>>> feature_extractor = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = feature_extractor(image, return_tensors="tf") |
|
>>> logits = model(**inputs).logits |
|
|
|
>>> # model predicts one of the 1000 ImageNet classes |
|
>>> predicted_label = int(tf.math.argmax(logits, axis=-1)) |
|
>>> print(model.config.id2label[predicted_label]) |
|
{expected_output} |
|
``` |
|
""" |
|
|
|
TF_SAMPLE_DOCSTRINGS = { |
|
"SequenceClassification": TF_SEQUENCE_CLASSIFICATION_SAMPLE, |
|
"QuestionAnswering": TF_QUESTION_ANSWERING_SAMPLE, |
|
"TokenClassification": TF_TOKEN_CLASSIFICATION_SAMPLE, |
|
"MultipleChoice": TF_MULTIPLE_CHOICE_SAMPLE, |
|
"MaskedLM": TF_MASKED_LM_SAMPLE, |
|
"LMHead": TF_CAUSAL_LM_SAMPLE, |
|
"BaseModel": TF_BASE_MODEL_SAMPLE, |
|
"SpeechBaseModel": TF_SPEECH_BASE_MODEL_SAMPLE, |
|
"CTC": TF_SPEECH_CTC_SAMPLE, |
|
"VisionBaseModel": TF_VISION_BASE_MODEL_SAMPLE, |
|
"ImageClassification": TF_VISION_SEQ_CLASS_SAMPLE, |
|
} |
|
|
|
FLAX_TOKEN_CLASSIFICATION_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
|
|
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax") |
|
|
|
>>> outputs = model(**inputs) |
|
>>> logits = outputs.logits |
|
``` |
|
""" |
|
|
|
FLAX_QUESTION_ANSWERING_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
|
|
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" |
|
>>> inputs = tokenizer(question, text, return_tensors="jax") |
|
|
|
>>> outputs = model(**inputs) |
|
>>> start_scores = outputs.start_logits |
|
>>> end_scores = outputs.end_logits |
|
``` |
|
""" |
|
|
|
FLAX_SEQUENCE_CLASSIFICATION_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
|
|
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax") |
|
|
|
>>> outputs = model(**inputs) |
|
>>> logits = outputs.logits |
|
``` |
|
""" |
|
|
|
FLAX_MASKED_LM_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
|
|
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="jax") |
|
|
|
>>> outputs = model(**inputs) |
|
>>> logits = outputs.logits |
|
``` |
|
""" |
|
|
|
FLAX_BASE_MODEL_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
|
|
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax") |
|
>>> outputs = model(**inputs) |
|
|
|
>>> last_hidden_states = outputs.last_hidden_state |
|
``` |
|
""" |
|
|
|
FLAX_MULTIPLE_CHOICE_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
|
|
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." |
|
>>> choice0 = "It is eaten with a fork and a knife." |
|
>>> choice1 = "It is eaten while held in the hand." |
|
|
|
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True) |
|
>>> outputs = model(**{{k: v[None, :] for k, v in encoding.items()}}) |
|
|
|
>>> logits = outputs.logits |
|
``` |
|
""" |
|
|
|
FLAX_CAUSAL_LM_SAMPLE = r""" |
|
Example: |
|
|
|
```python |
|
>>> from transformers import {processor_class}, {model_class} |
|
|
|
>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}") |
|
>>> model = {model_class}.from_pretrained("{checkpoint}") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np") |
|
>>> outputs = model(**inputs) |
|
|
|
>>> # retrieve logts for next token |
|
>>> next_token_logits = outputs.logits[:, -1] |
|
``` |
|
""" |
|
|
|
FLAX_SAMPLE_DOCSTRINGS = { |
|
"SequenceClassification": FLAX_SEQUENCE_CLASSIFICATION_SAMPLE, |
|
"QuestionAnswering": FLAX_QUESTION_ANSWERING_SAMPLE, |
|
"TokenClassification": FLAX_TOKEN_CLASSIFICATION_SAMPLE, |
|
"MultipleChoice": FLAX_MULTIPLE_CHOICE_SAMPLE, |
|
"MaskedLM": FLAX_MASKED_LM_SAMPLE, |
|
"BaseModel": FLAX_BASE_MODEL_SAMPLE, |
|
"LMHead": FLAX_CAUSAL_LM_SAMPLE, |
|
} |
|
|
|
|
|
def add_code_sample_docstrings( |
|
*docstr, |
|
processor_class=None, |
|
checkpoint=None, |
|
output_type=None, |
|
config_class=None, |
|
mask="[MASK]", |
|
qa_target_start_index=14, |
|
qa_target_end_index=15, |
|
model_cls=None, |
|
modality=None, |
|
expected_output="", |
|
expected_loss="", |
|
): |
|
def docstring_decorator(fn): |
|
|
|
model_class = fn.__qualname__.split(".")[0] if model_cls is None else model_cls |
|
|
|
if model_class[:2] == "TF": |
|
sample_docstrings = TF_SAMPLE_DOCSTRINGS |
|
elif model_class[:4] == "Flax": |
|
sample_docstrings = FLAX_SAMPLE_DOCSTRINGS |
|
else: |
|
sample_docstrings = PT_SAMPLE_DOCSTRINGS |
|
|
|
|
|
|
|
|
|
doc_kwargs = dict( |
|
model_class=model_class, |
|
processor_class=processor_class, |
|
checkpoint=checkpoint, |
|
mask=mask, |
|
qa_target_start_index=qa_target_start_index, |
|
qa_target_end_index=qa_target_end_index, |
|
expected_output=expected_output, |
|
expected_loss=expected_loss, |
|
) |
|
|
|
if "SequenceClassification" in model_class and modality == "audio": |
|
code_sample = sample_docstrings["AudioClassification"] |
|
elif "SequenceClassification" in model_class: |
|
code_sample = sample_docstrings["SequenceClassification"] |
|
elif "QuestionAnswering" in model_class: |
|
code_sample = sample_docstrings["QuestionAnswering"] |
|
elif "TokenClassification" in model_class: |
|
code_sample = sample_docstrings["TokenClassification"] |
|
elif "MultipleChoice" in model_class: |
|
code_sample = sample_docstrings["MultipleChoice"] |
|
elif "MaskedLM" in model_class or model_class in ["FlaubertWithLMHeadModel", "XLMWithLMHeadModel"]: |
|
code_sample = sample_docstrings["MaskedLM"] |
|
elif "LMHead" in model_class or "CausalLM" in model_class: |
|
code_sample = sample_docstrings["LMHead"] |
|
elif "CTC" in model_class: |
|
code_sample = sample_docstrings["CTC"] |
|
elif "AudioFrameClassification" in model_class: |
|
code_sample = sample_docstrings["AudioFrameClassification"] |
|
elif "XVector" in model_class and modality == "audio": |
|
code_sample = sample_docstrings["AudioXVector"] |
|
elif "Model" in model_class and modality == "audio": |
|
code_sample = sample_docstrings["SpeechBaseModel"] |
|
elif "Model" in model_class and modality == "vision": |
|
code_sample = sample_docstrings["VisionBaseModel"] |
|
elif "Model" in model_class or "Encoder" in model_class: |
|
code_sample = sample_docstrings["BaseModel"] |
|
elif "ImageClassification" in model_class: |
|
code_sample = sample_docstrings["ImageClassification"] |
|
else: |
|
raise ValueError(f"Docstring can't be built for model {model_class}") |
|
|
|
func_doc = (fn.__doc__ or "") + "".join(docstr) |
|
output_doc = "" if output_type is None else _prepare_output_docstrings(output_type, config_class) |
|
built_doc = code_sample.format(**doc_kwargs) |
|
fn.__doc__ = func_doc + output_doc + built_doc |
|
return fn |
|
|
|
return docstring_decorator |
|
|
|
|
|
def prune_linear_layer(layer: nn.Linear, index: torch.LongTensor, dim: int = 0) -> nn.Linear: |
|
""" |
|
Prune a linear layer to keep only entries in index. |
|
|
|
Used to remove heads. |
|
|
|
Args: |
|
layer (`torch.nn.Linear`): The layer to prune. |
|
index (`torch.LongTensor`): The indices to keep in the layer. |
|
dim (`int`, *optional*, defaults to 0): The dimension on which to keep the indices. |
|
|
|
Returns: |
|
`torch.nn.Linear`: The pruned layer as a new layer with `requires_grad=True`. |
|
""" |
|
index = index.to(layer.weight.device) |
|
W = layer.weight.index_select(dim, index).clone().detach() |
|
if layer.bias is not None: |
|
if dim == 1: |
|
b = layer.bias.clone().detach() |
|
else: |
|
b = layer.bias[index].clone().detach() |
|
new_size = list(layer.weight.size()) |
|
new_size[dim] = len(index) |
|
new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device) |
|
new_layer.weight.requires_grad = False |
|
new_layer.weight.copy_(W.contiguous()) |
|
new_layer.weight.requires_grad = True |
|
if layer.bias is not None: |
|
new_layer.bias.requires_grad = False |
|
new_layer.bias.copy_(b.contiguous()) |
|
new_layer.bias.requires_grad = True |
|
return new_layer |
|
|
|
|
|
def apply_chunking_to_forward( |
|
forward_fn: Callable[..., torch.Tensor], chunk_size: int, chunk_dim: int, *input_tensors |
|
) -> torch.Tensor: |
|
""" |
|
This function chunks the `input_tensors` into smaller input tensor parts of size `chunk_size` over the dimension |
|
`chunk_dim`. It then applies a layer `forward_fn` to each chunk independently to save memory. |
|
|
|
If the `forward_fn` is independent across the `chunk_dim` this function will yield the same result as directly |
|
applying `forward_fn` to `input_tensors`. |
|
|
|
Args: |
|
forward_fn (`Callable[..., torch.Tensor]`): |
|
The forward function of the model. |
|
chunk_size (`int`): |
|
The chunk size of a chunked tensor: `num_chunks = len(input_tensors[0]) / chunk_size`. |
|
chunk_dim (`int`): |
|
The dimension over which the `input_tensors` should be chunked. |
|
input_tensors (`Tuple[torch.Tensor]`): |
|
The input tensors of `forward_fn` which will be chunked |
|
|
|
Returns: |
|
`torch.Tensor`: A tensor with the same shape as the `forward_fn` would have given if applied`. |
|
|
|
|
|
Examples: |
|
|
|
```python |
|
# rename the usual forward() fn to forward_chunk() |
|
def forward_chunk(self, hidden_states): |
|
hidden_states = self.decoder(hidden_states) |
|
return hidden_states |
|
|
|
|
|
# implement a chunked forward function |
|
def forward(self, hidden_states): |
|
return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states) |
|
```""" |
|
|
|
assert len(input_tensors) > 0, f"{input_tensors} has to be a tuple/list of tensors" |
|
|
|
|
|
num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters) |
|
if num_args_in_forward_chunk_fn != len(input_tensors): |
|
raise ValueError( |
|
f"forward_chunk_fn expects {num_args_in_forward_chunk_fn} arguments, but only {len(input_tensors)} input " |
|
"tensors are given" |
|
) |
|
|
|
if chunk_size > 0: |
|
tensor_shape = input_tensors[0].shape[chunk_dim] |
|
for input_tensor in input_tensors: |
|
if input_tensor.shape[chunk_dim] != tensor_shape: |
|
raise ValueError( |
|
f"All input tenors have to be of the same shape: {tensor_shape}, " |
|
f"found shape {input_tensor.shape[chunk_dim]}" |
|
) |
|
|
|
if input_tensors[0].shape[chunk_dim] % chunk_size != 0: |
|
raise ValueError( |
|
f"The dimension to be chunked {input_tensors[0].shape[chunk_dim]} has to be a multiple of the chunk " |
|
f"size {chunk_size}" |
|
) |
|
|
|
num_chunks = input_tensors[0].shape[chunk_dim] // chunk_size |
|
|
|
|
|
input_tensors_chunks = tuple(input_tensor.chunk(num_chunks, dim=chunk_dim) for input_tensor in input_tensors) |
|
|
|
output_chunks = tuple(forward_fn(*input_tensors_chunk) for input_tensors_chunk in zip(*input_tensors_chunks)) |
|
|
|
return torch.cat(output_chunks, dim=chunk_dim) |
|
|
|
return forward_fn(*input_tensors) |
|
|
|
|
|
def find_pruneable_heads_and_indices( |
|
heads: List[int], n_heads: int, head_size: int, already_pruned_heads: Set[int] |
|
) -> Tuple[Set[int], torch.LongTensor]: |
|
""" |
|
Finds the heads and their indices taking `already_pruned_heads` into account. |
|
|
|
Args: |
|
heads (`List[int]`): List of the indices of heads to prune. |
|
n_heads (`int`): The number of heads in the model. |
|
head_size (`int`): The size of each head. |
|
already_pruned_heads (`Set[int]`): A set of already pruned heads. |
|
|
|
Returns: |
|
`Tuple[Set[int], torch.LongTensor]`: A tuple with the remaining heads and their corresponding indices. |
|
""" |
|
mask = torch.ones(n_heads, head_size) |
|
heads = set(heads) - already_pruned_heads |
|
for head in heads: |
|
|
|
head = head - sum(1 if h < head else 0 for h in already_pruned_heads) |
|
mask[head] = 0 |
|
mask = mask.view(-1).contiguous().eq(1) |
|
index: torch.LongTensor = torch.arange(len(mask))[mask].long() |
|
return heads, index |
|
|