|
from copy import deepcopy |
|
from torch.nn.init import xavier_uniform_ |
|
import torch.nn.functional as F |
|
from torch.nn import Parameter |
|
from torch.nn.init import normal_ |
|
import torch.utils.checkpoint |
|
from torch import Tensor, device |
|
from .TAAS_utils import * |
|
from transformers.modeling_utils import ModuleUtilsMixin |
|
from fairseq import utils |
|
from fairseq.models import ( |
|
FairseqEncoder, |
|
FairseqEncoderModel, |
|
register_model, |
|
register_model_architecture, |
|
) |
|
from fairseq.modules import ( |
|
LayerNorm, |
|
) |
|
from fairseq.utils import safe_hasattr |
|
|
|
def init_params(module, n_layers): |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=0.02 / math.sqrt(n_layers)) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
if isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=0.02) |
|
|
|
|
|
@torch.jit.script |
|
def softmax_dropout(input, dropout_prob: float, is_training: bool): |
|
return F.dropout(F.softmax(input, -1), dropout_prob, is_training) |
|
|
|
|
|
class SelfMultiheadAttention(nn.Module): |
|
def __init__( |
|
self, |
|
embed_dim, |
|
num_heads, |
|
dropout=0.0, |
|
bias=True, |
|
scaling_factor=1, |
|
): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
|
|
self.num_heads = num_heads |
|
self.dropout = dropout |
|
|
|
self.head_dim = embed_dim // num_heads |
|
assert (self.head_dim * num_heads == self.embed_dim), "embed_dim must be divisible by num_heads" |
|
self.scaling = (self.head_dim * scaling_factor) ** -0.5 |
|
|
|
self.linear_q = nn.Linear(self.embed_dim, self.num_heads * self.head_dim) |
|
self.linear_k = nn.Linear(self.embed_dim, self.num_heads * self.head_dim) |
|
self.linear_v = nn.Linear(self.embed_dim, self.num_heads * self.head_dim) |
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=bias) |
|
|
|
def forward( |
|
self, |
|
query: Tensor, |
|
attn_bias: Tensor = None, |
|
) -> Tensor: |
|
n_graph, n_node, embed_dim = query.size() |
|
|
|
|
|
_shape = (-1, n_graph * self.num_heads, self.head_dim) |
|
q = self.linear_q(query).contiguous().view(n_graph, -1, self.num_heads, self.head_dim).transpose(1, 2) * self.scaling |
|
k = self.linear_k(query).contiguous().view(n_graph, -1, self.num_heads, self.head_dim).transpose(1, 2) |
|
v = self.linear_v(query).contiguous().view(n_graph, -1, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
attn_weights = torch.matmul(q, k.transpose(2, 3)) |
|
attn_weights = attn_weights + attn_bias |
|
attn_probs = softmax_dropout(attn_weights, self.dropout, self.training) |
|
|
|
attn = torch.matmul(attn_probs, v) |
|
attn = attn.transpose(1, 2).contiguous().view(n_graph, -1, embed_dim) |
|
attn = self.out_proj(attn) |
|
return attn |
|
|
|
|
|
class Graphormer3DEncoderLayer(nn.Module): |
|
""" |
|
Implements a Graphormer-3D Encoder Layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embedding_dim: int = 768, |
|
ffn_embedding_dim: int = 3072, |
|
num_attention_heads: int = 8, |
|
dropout: float = 0.1, |
|
attention_dropout: float = 0.1, |
|
activation_dropout: float = 0.1, |
|
) -> None: |
|
super().__init__() |
|
|
|
|
|
self.embedding_dim = embedding_dim |
|
self.num_attention_heads = num_attention_heads |
|
self.attention_dropout = attention_dropout |
|
|
|
self.dropout = dropout |
|
self.activation_dropout = activation_dropout |
|
|
|
self.self_attn = SelfMultiheadAttention(self.embedding_dim, num_attention_heads, dropout=attention_dropout) |
|
|
|
self.self_attn_layer_norm = nn.LayerNorm(self.embedding_dim) |
|
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim) |
|
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim) |
|
self.final_layer_norm = nn.LayerNorm(self.embedding_dim) |
|
|
|
def forward(self, x: Tensor, attn_bias: Tensor = None): |
|
residual = x |
|
x = self.self_attn_layer_norm(x) |
|
x = self.self_attn(query=x, attn_bias=attn_bias) |
|
x = F.dropout(x, p=self.dropout, training=self.training) |
|
x = residual + x |
|
|
|
residual = x |
|
x = self.final_layer_norm(x) |
|
x = F.gelu(self.fc1(x)) |
|
x = F.dropout(x, p=self.activation_dropout, training=self.training) |
|
x = self.fc2(x) |
|
x = F.dropout(x, p=self.dropout, training=self.training) |
|
x = residual + x |
|
return x |
|
|
|
|
|
from fairseq.models import ( |
|
BaseFairseqModel, |
|
register_model, |
|
register_model_architecture, |
|
) |
|
|
|
|
|
class Graphormer3D(BaseFairseqModel): |
|
def __init__(self): |
|
super().__init__() |
|
self.atom_types = 64 |
|
self.edge_types = 64 * 64 |
|
self.embed_dim = 768 |
|
self.layer_nums = 12 |
|
self.ffn_embed_dim = 768 |
|
self.blocks = 4 |
|
self.attention_heads = 48 |
|
self.input_dropout = 0.0 |
|
self.dropout = 0.1 |
|
self.attention_dropout = 0.1 |
|
self.activation_dropout = 0.0 |
|
self.node_loss_weight = 15 |
|
self.min_node_loss_weight = 1 |
|
self.eng_loss_weight = 1 |
|
self.num_kernel = 128 |
|
self.atom_encoder = nn.Embedding(self.atom_types, self.embed_dim, padding_idx=0) |
|
self.edge_embedding = nn.Embedding(32, self.attention_heads, padding_idx=0) |
|
self.input_dropout = nn.Dropout(0.1) |
|
self.layers = nn.ModuleList( |
|
[ |
|
Graphormer3DEncoderLayer( |
|
self.embed_dim, |
|
self.ffn_embed_dim, |
|
num_attention_heads=self.attention_heads, |
|
dropout=self.dropout, |
|
attention_dropout=self.attention_dropout, |
|
activation_dropout=self.activation_dropout, |
|
) |
|
for _ in range(self.layer_nums) |
|
] |
|
) |
|
self.atom_encoder = nn.Embedding(512 * 9 + 1, self.embed_dim, padding_idx=0) |
|
self.edge_encoder = nn.Embedding(512 * 3 + 1, self.attention_heads, padding_idx=0) |
|
self.edge_type = 'multi_hop' |
|
if self.edge_type == 'multi_hop': |
|
self.edge_dis_encoder = nn.Embedding(16 * self.attention_heads * self.attention_heads, 1) |
|
self.spatial_pos_encoder = nn.Embedding(512, self.attention_heads, padding_idx=0) |
|
self.in_degree_encoder = nn.Embedding(512, self.embed_dim, padding_idx=0) |
|
self.out_degree_encoder = nn.Embedding(512, self.embed_dim, padding_idx=0) |
|
self.node_position_ids_encoder = nn.Embedding(10, self.embed_dim, padding_idx=0) |
|
|
|
self.final_ln: Callable[[Tensor], Tensor] = nn.LayerNorm(self.embed_dim) |
|
|
|
self.engergy_proj: Callable[[Tensor], Tensor] = NonLinear(self.embed_dim, 1) |
|
self.energe_agg_factor: Callable[[Tensor], Tensor] = nn.Embedding(3, 1) |
|
nn.init.normal_(self.energe_agg_factor.weight, 0, 0.01) |
|
|
|
self.graph_token = nn.Embedding(1, 768) |
|
self.graph_token_virtual_distance = nn.Embedding(1, self.attention_heads) |
|
|
|
K = self.num_kernel |
|
|
|
self.gbf: Callable[[Tensor, Tensor], Tensor] = GaussianLayer(K, self.edge_types) |
|
self.bias_proj: Callable[[Tensor], Tensor] = NonLinear(K, self.attention_heads) |
|
self.edge_proj: Callable[[Tensor], Tensor] = nn.Linear(K, self.embed_dim) |
|
self.node_proc: Callable[[Tensor, Tensor, Tensor], Tensor] = NodeTaskHead(self.embed_dim, self.attention_heads) |
|
|
|
def forward(self, node_feature, spatial_pos, in_degree, out_degree, edge_type_matrix, edge_input, node_position_ids): |
|
""" |
|
attn_bias:图中节点对之间的最短路径距离超过最短路径限制最大距离(spatial_pos_max)的位置为-inf,其余位置为0,形状为(n_graph, n_node+1, n_node+1) |
|
spatial_pos:图中节点对之间的最短路径长度,形状为(n_graph, n_node, n_node) |
|
x:图中节点的特征,形状为(n_graph, n_node, n_node_features) |
|
in_degree:图中节点的入度,形状为(n_graph, n_node) |
|
out_degree:图中节点的出度,形状为(n_graph, n_node) |
|
edge_input:图中节点对之间的最短路径(限制最短路径最大跳数为multi_hop_max_dist)上的边的特征,形状为(n_graph, n_node, n_node, multi_hop_max_dist, n_edge_features) |
|
attn_edge_type:图的边特征,形状为(n_graph, n_node, n_node, n_edge_features) |
|
:param batch_data: |
|
:return: |
|
""" |
|
|
|
|
|
|
|
|
|
attn_edge_type = self.edge_embedding(edge_type_matrix) |
|
edge_input = self.edge_embedding(edge_input) |
|
|
|
n_graph, n_node = node_feature.size()[:2] |
|
|
|
|
|
|
|
|
|
|
|
|
|
spatial_pos_bias = self.spatial_pos_encoder(spatial_pos).permute(0, 3, 1, 2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.edge_type == 'multi_hop': |
|
spatial_pos_ = spatial_pos.clone() |
|
spatial_pos_[spatial_pos_ == 0] = 1 |
|
|
|
spatial_pos_ = torch.where(spatial_pos_ > 1, spatial_pos_ - 1, spatial_pos_) |
|
|
|
|
|
|
|
|
|
|
|
max_dist = edge_input.size(-2) |
|
edge_input_flat = edge_input.permute(3, 0, 1, 2, 4).reshape(max_dist, -1, self.attention_heads) |
|
edge_input_flat = torch.bmm(edge_input_flat, self.edge_dis_encoder.weight.reshape(-1, self.attention_heads, self.attention_heads)[:max_dist, :, :]) |
|
edge_input = edge_input_flat.reshape(max_dist, n_graph, n_node, n_node, self.attention_heads).permute(1, 2, 3, 0, 4) |
|
edge_input = (edge_input.sum(-2) / (spatial_pos_.float().unsqueeze(-1))).permute(0, 3, 1, 2) |
|
else: |
|
|
|
edge_input = self.edge_encoder(attn_edge_type).mean(-2).permute(0, 3, 1, 2) |
|
|
|
|
|
graph_attn_bias = spatial_pos_bias + edge_input |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
node_position_embedding = self.node_position_ids_encoder(node_position_ids) |
|
node_position_embedding = node_position_embedding.contiguous().view(n_graph, n_node, self.embed_dim) |
|
|
|
|
|
node_feature = node_feature + self.in_degree_encoder(in_degree) + \ |
|
self.out_degree_encoder(out_degree) + node_position_embedding |
|
|
|
|
|
|
|
|
|
|
|
output = self.input_dropout(node_feature) |
|
for enc_layer in self.layers: |
|
output = enc_layer(output, graph_attn_bias) |
|
output = self.final_ln(output) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return output |
|
|
|
|
|
@torch.jit.script |
|
def gaussian(x, mean, std): |
|
pi = 3.14159 |
|
a = (2 * pi) ** 0.5 |
|
return torch.exp(-0.5 * (((x - mean) / std) ** 2)) / (a * std) |
|
|
|
|
|
class GaussianLayer(nn.Module): |
|
def __init__(self, K=128, edge_types=1024): |
|
super().__init__() |
|
self.K = K |
|
self.means = nn.Embedding(1, K) |
|
self.stds = nn.Embedding(1, K) |
|
self.mul = nn.Embedding(edge_types, 1) |
|
self.bias = nn.Embedding(edge_types, 1) |
|
nn.init.uniform_(self.means.weight, 0, 3) |
|
nn.init.uniform_(self.stds.weight, 0, 3) |
|
nn.init.constant_(self.bias.weight, 0) |
|
nn.init.constant_(self.mul.weight, 1) |
|
|
|
def forward(self, x, edge_types): |
|
mul = self.mul(edge_types) |
|
bias = self.bias(edge_types) |
|
x = mul * x.unsqueeze(-1) + bias |
|
x = x.expand(-1, -1, -1, self.K) |
|
mean = self.means.weight.float().view(-1) |
|
std = self.stds.weight.float().view(-1).abs() + 1e-5 |
|
return gaussian(x.float(), mean, std).type_as(self.means.weight) |
|
|
|
|
|
class RBF(nn.Module): |
|
def __init__(self, K, edge_types): |
|
super().__init__() |
|
self.K = K |
|
self.means = nn.parameter.Parameter(torch.empty(K)) |
|
self.temps = nn.parameter.Parameter(torch.empty(K)) |
|
self.mul: Callable[..., Tensor] = nn.Embedding(edge_types, 1) |
|
self.bias: Callable[..., Tensor] = nn.Embedding(edge_types, 1) |
|
nn.init.uniform_(self.means, 0, 3) |
|
nn.init.uniform_(self.temps, 0.1, 10) |
|
nn.init.constant_(self.bias.weight, 0) |
|
nn.init.constant_(self.mul.weight, 1) |
|
|
|
def forward(self, x: Tensor, edge_types): |
|
mul = self.mul(edge_types) |
|
bias = self.bias(edge_types) |
|
x = mul * x.unsqueeze(-1) + bias |
|
mean = self.means.float() |
|
temp = self.temps.float().abs() |
|
return ((x - mean).square() * (-temp)).exp().type_as(self.means) |
|
|
|
|
|
class NonLinear(nn.Module): |
|
def __init__(self, input, output_size, hidden=None): |
|
super(NonLinear, self).__init__() |
|
if hidden is None: |
|
hidden = input |
|
self.layer1 = nn.Linear(input, hidden) |
|
self.layer2 = nn.Linear(hidden, output_size) |
|
|
|
def forward(self, x): |
|
x = F.gelu(self.layer1(x)) |
|
x = self.layer2(x) |
|
return x |
|
|
|
|
|
class NodeTaskHead(nn.Module): |
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
num_heads: int, |
|
): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.q_proj: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, embed_dim) |
|
self.k_proj: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, embed_dim) |
|
self.v_proj: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, embed_dim) |
|
self.num_heads = num_heads |
|
self.scaling = (embed_dim // num_heads) ** -0.5 |
|
self.force_proj1: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, 1) |
|
self.force_proj2: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, 1) |
|
self.force_proj3: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, 1) |
|
|
|
def forward( |
|
self, |
|
query: Tensor, |
|
attn_bias: Tensor, |
|
delta_pos: Tensor, |
|
) -> Tensor: |
|
bsz, n_node, _ = query.size() |
|
q = (self.q_proj(query).view(bsz, n_node, self.num_heads, -1).transpose(1, 2) * self.scaling) |
|
k = self.k_proj(query).view(bsz, n_node, self.num_heads, -1).transpose(1, 2) |
|
v = self.v_proj(query).view(bsz, n_node, self.num_heads, -1).transpose(1, 2) |
|
attn = q @ k.transpose(-1, -2) |
|
attn_probs = softmax_dropout(attn.view(-1, n_node, n_node) + attn_bias, 0.1, self.training).view(bsz, self.num_heads, n_node, n_node) |
|
rot_attn_probs = attn_probs.unsqueeze(-1) * delta_pos.unsqueeze(1).type_as(attn_probs) |
|
rot_attn_probs = rot_attn_probs.permute(0, 1, 4, 2, 3) |
|
x = rot_attn_probs @ v.unsqueeze(2) |
|
x = x.permute(0, 3, 2, 1, 4).contiguous().view(bsz, n_node, 3, -1) |
|
f1 = self.force_proj1(x[:, :, 0, :]).view(bsz, n_node, 1) |
|
f2 = self.force_proj2(x[:, :, 1, :]).view(bsz, n_node, 1) |
|
f3 = self.force_proj3(x[:, :, 2, :]).view(bsz, n_node, 1) |
|
cur_force = torch.cat([f1, f2, f3], dim=-1).float() |
|
return cur_force |
|
|
|
|