|
|
|
|
|
|
|
from copy import deepcopy |
|
from torch.nn.init import xavier_uniform_ |
|
import torch.nn.functional as F |
|
from torch.nn import Parameter |
|
from torch.nn.init import normal_ |
|
import torch.utils.checkpoint |
|
from torch import Tensor, device |
|
from .TAAS_utils import * |
|
from transformers.modeling_utils import ModuleUtilsMixin |
|
from transformers import AutoTokenizer, AutoModel, BertTokenizer |
|
from .graphormer import Graphormer3D |
|
import pickle |
|
import torch |
|
import sys |
|
from .ner_model import NER_model |
|
import numpy as np |
|
|
|
|
|
from .htc_loss import HTCLoss |
|
from transformers.utils.hub import cached_file |
|
remap_code_2_chn_file_path = cached_file( |
|
'Cainiao-AI/TAAS', |
|
'remap_code_2_chn.pkl' |
|
) |
|
s2_label_dict_remap = { |
|
0: '0', |
|
1: '1', |
|
2: '2', |
|
3: '3', |
|
4: '4', |
|
5: '5', |
|
6: '6', |
|
7: '7', |
|
8: '8', |
|
9: '9', |
|
10: 'a', |
|
11: 'b', |
|
12: 'c', |
|
13: 'd', |
|
14: 'e', |
|
15: 'f'} |
|
|
|
class StellarEmbedding(nn.Module): |
|
"""Construct the embeddings from word, position and token_type embeddings.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) |
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) |
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) |
|
self.ner_type_embeddings = nn.Embedding(10, config.hidden_size) |
|
self.use_task_id = config.use_task_id |
|
if config.use_task_id: |
|
self.task_type_embeddings = nn.Embedding(config.task_type_vocab_size, config.hidden_size) |
|
|
|
|
|
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") |
|
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) |
|
self.register_buffer("token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), |
|
persistent=False) |
|
self._reset_parameters() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
ner_type_ids: Optional[torch.LongTensor] = None, |
|
task_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
past_key_values_length: int = 0, |
|
) -> torch.Tensor: |
|
if input_ids is not None: |
|
input_shape = input_ids.size() |
|
else: |
|
input_shape = inputs_embeds.size()[:-1] |
|
|
|
seq_length = input_shape[1] |
|
|
|
if position_ids is None: |
|
position_ids = self.position_ids[:, past_key_values_length: seq_length + past_key_values_length] |
|
|
|
|
|
|
|
|
|
if token_type_ids is None: |
|
if hasattr(self, "token_type_ids"): |
|
buffered_token_type_ids = self.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
if ner_type_ids is not None: |
|
ner_type_embeddings = self.ner_type_embeddings(ner_type_ids) |
|
|
|
embeddings = inputs_embeds + token_type_embeddings + ner_type_embeddings |
|
else: |
|
embeddings = inputs_embeds + token_type_embeddings |
|
if self.position_embedding_type == "absolute": |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings += position_embeddings |
|
|
|
|
|
if self.use_task_id: |
|
if task_type_ids is None: |
|
task_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) |
|
task_type_embeddings = self.task_type_embeddings(task_type_ids) |
|
embeddings += task_type_embeddings |
|
|
|
embeddings = self.LayerNorm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
def _reset_parameters(self): |
|
for p in self.parameters(): |
|
if p.dim() > 1: |
|
normal_(p, mean=0.0, std=0.02) |
|
|
|
def set_pretrained_weights(self, path): |
|
pre_train_weights = torch.load(path, map_location=torch.device('cpu')) |
|
new_weights = dict() |
|
for layer in self.state_dict().keys(): |
|
if layer == 'position_ids': |
|
new_weights[layer] = pre_train_weights['ernie_model.embeddings.position_ids'] |
|
elif layer == 'word_embeddings.weight': |
|
new_weights[layer] = pre_train_weights['ernie_model.embeddings.word_embeddings.weight'] |
|
elif layer == 'position_embeddings.weight': |
|
new_weights[layer] = pre_train_weights['ernie_model.embeddings.position_embeddings.weight'] |
|
elif layer == 'token_type_embeddings.weight': |
|
new_weights[layer] = pre_train_weights['ernie_model.embeddings.token_type_embeddings.weight'] |
|
elif layer == 'task_type_embeddings.weight': |
|
new_weights[layer] = pre_train_weights['ernie_model.embeddings.task_type_embeddings.weight'] |
|
elif layer == 'LayerNorm.weight': |
|
new_weights[layer] = pre_train_weights['ernie_model.embeddings.LayerNorm.weight'] |
|
elif layer == 'LayerNorm.bias': |
|
new_weights[layer] = pre_train_weights['ernie_model.embeddings.LayerNorm.bias'] |
|
else: |
|
new_weights[layer] = self.state_dict()[layer] |
|
self.load_state_dict(new_weights) |
|
|
|
def save_weights(self, path): |
|
torch.save(self.state_dict(), path) |
|
|
|
def load_weights(self, path): |
|
self.load_state_dict(torch.load(path)) |
|
|
|
|
|
|
|
class StellarLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = ErnieAttention(config) |
|
self.is_decoder = config.is_decoder |
|
self.add_cross_attention = config.add_cross_attention |
|
if self.add_cross_attention: |
|
if not self.is_decoder: |
|
raise ValueError(f"{self} should be used as a decoder model if cross attention is added") |
|
self.crossattention = ErnieAttention(config, position_embedding_type="absolute") |
|
self.intermediate = ErnieIntermediate(config) |
|
self.output = ErnieOutput(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
|
|
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None |
|
self_attention_outputs = self.attention( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
output_attentions=output_attentions, |
|
past_key_value=self_attn_past_key_value, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
|
|
|
|
if self.is_decoder: |
|
outputs = self_attention_outputs[1:-1] |
|
present_key_value = self_attention_outputs[-1] |
|
else: |
|
outputs = self_attention_outputs[1:] |
|
|
|
cross_attn_present_key_value = None |
|
if self.is_decoder and encoder_hidden_states is not None: |
|
if not hasattr(self, "crossattention"): |
|
raise ValueError( |
|
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" |
|
" by setting `config.add_cross_attention=True`" |
|
) |
|
|
|
|
|
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None |
|
cross_attention_outputs = self.crossattention( |
|
attention_output, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
cross_attn_past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = cross_attention_outputs[0] |
|
outputs = outputs + cross_attention_outputs[1:-1] |
|
|
|
|
|
cross_attn_present_key_value = cross_attention_outputs[-1] |
|
present_key_value = present_key_value + cross_attn_present_key_value |
|
|
|
layer_output = apply_chunking_to_forward( |
|
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output |
|
) |
|
outputs = (layer_output,) + outputs |
|
|
|
|
|
if self.is_decoder: |
|
outputs = outputs + (present_key_value,) |
|
|
|
return outputs |
|
|
|
def feed_forward_chunk(self, attention_output): |
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
class StellarEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList([StellarLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = False, |
|
output_hidden_states: Optional[bool] = False, |
|
return_dict: Optional[bool] = True, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None |
|
|
|
next_decoder_cache = () if use_cache else None |
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
past_key_value = past_key_values[i] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
if use_cache: |
|
logger.warning( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, past_key_value, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[-1],) |
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
if self.config.add_cross_attention: |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
next_decoder_cache, |
|
all_hidden_states, |
|
all_self_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_decoder_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
|
|
class StellarPooler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
class StellarModel(nn.Module): |
|
""" |
|
""" |
|
|
|
def __init__(self, config, add_pooling_layer=True): |
|
super().__init__() |
|
self.config = config |
|
self.encoder = StellarEncoder(config) |
|
self.pooler = StellarPooler(config) if add_pooling_layer else None |
|
|
|
self._reset_parameters() |
|
|
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
def forward( |
|
self, |
|
h_input, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
task_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: |
|
r""" |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if self.config.is_decoder: |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
else: |
|
use_cache = False |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
batch_size, seq_length = input_shape |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
|
|
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) |
|
|
|
if token_type_ids is None: |
|
if hasattr(self.embeddings, "token_type_ids"): |
|
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) |
|
|
|
|
|
|
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) |
|
|
|
|
|
|
|
if self.config.is_decoder and encoder_hidden_states is not None: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
encoder_outputs = self.encoder( |
|
h_input, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
|
|
if not return_dict: |
|
return (sequence_output, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
past_key_values=encoder_outputs.past_key_values, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
cross_attentions=encoder_outputs.cross_attentions, |
|
) |
|
|
|
def get_extended_attention_mask( |
|
self, attention_mask: Tensor, input_shape: Tuple[int], device: device = None, dtype: torch.float = None |
|
) -> Tensor: |
|
""" |
|
Makes broadcastable attention and causal masks so that future and masked tokens are ignored. |
|
|
|
Arguments: |
|
attention_mask (`torch.Tensor`): |
|
Mask with ones indicating tokens to attend to, zeros for tokens to ignore. |
|
input_shape (`Tuple[int]`): |
|
The shape of the input to the model. |
|
|
|
Returns: |
|
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. |
|
""" |
|
if dtype is None: |
|
dtype = torch.float32 |
|
|
|
if not (attention_mask.dim() == 2 and self.config.is_decoder): |
|
|
|
if device is not None: |
|
warnings.warn( |
|
"The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
|
|
|
|
if attention_mask.dim() == 3: |
|
extended_attention_mask = attention_mask[:, None, :, :] |
|
elif attention_mask.dim() == 2: |
|
|
|
|
|
|
|
if self.config.is_decoder: |
|
extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder( |
|
input_shape, attention_mask, device |
|
) |
|
else: |
|
extended_attention_mask = attention_mask[:, None, None, :] |
|
else: |
|
raise ValueError( |
|
f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
extended_attention_mask = extended_attention_mask.to(dtype=dtype) |
|
extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min |
|
return extended_attention_mask |
|
|
|
def get_head_mask( |
|
self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False |
|
) -> Tensor: |
|
""" |
|
Prepare the head mask if needed. |
|
|
|
Args: |
|
head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*): |
|
The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard). |
|
num_hidden_layers (`int`): |
|
The number of hidden layers in the model. |
|
is_attention_chunked: (`bool`, *optional*, defaults to `False`): |
|
Whether or not the attentions scores are computed by chunks or not. |
|
|
|
Returns: |
|
`torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with |
|
`[None]` for each layer. |
|
""" |
|
if head_mask is not None: |
|
head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers) |
|
if is_attention_chunked is True: |
|
head_mask = head_mask.unsqueeze(-1) |
|
else: |
|
head_mask = [None] * num_hidden_layers |
|
|
|
return head_mask |
|
|
|
def _reset_parameters(self): |
|
r"""Initiate parameters in the transformer model.""" |
|
for p in self.parameters(): |
|
if p.dim() > 1: |
|
normal_(p, mean=0.0, std=self.config.initializer_range) |
|
|
|
def save_weights(self, path): |
|
torch.save(self.state_dict(), path) |
|
|
|
def load_weights(self, path): |
|
self.load_state_dict(torch.load(path)) |
|
|
|
|
|
class TAAS(PreTrainedModel): |
|
def __init__(self, config, return_last_hidden_state=False): |
|
super(TAAS, self).__init__(config) |
|
|
|
""" |
|
:param d_model: d_k = d_v = d_model/nhead = 64, 模型中向量的维度,论文默认值为 512 |
|
:param nhead: 多头注意力机制中多头的数量,论文默认为值 8 |
|
:param num_encoder_layers: encoder堆叠的数量,也就是论文中的N,论文默认值为6 |
|
:param num_decoder_layers: decoder堆叠的数量,也就是论文中的N,论文默认值为6 |
|
:param dim_feedforward: 全连接中向量的维度,论文默认值为 2048 |
|
:param dropout: 丢弃率,论文中的默认值为 0.1 |
|
""" |
|
|
|
self.config = deepcopy(config) |
|
self.return_last_hidden_state = return_last_hidden_state |
|
self.dropout = nn.Dropout(self.config.hidden_dropout_prob) |
|
|
|
self.embedding = StellarEmbedding(self.config) |
|
self.embedding_weights = Parameter(torch.ones(1, 1, self.config.hidden_size)) |
|
|
|
self.stellar_config = deepcopy(config) |
|
self.stellar_model = StellarModel(self.stellar_config) |
|
|
|
|
|
self.graphormer = Graphormer3D() |
|
|
|
self.encoder_config = deepcopy(config) |
|
self.encoder_config.num_hidden_layers = 1 |
|
self.encoder = StellarModel(self.encoder_config) |
|
self.encoder_out_dim = self.encoder_config.hidden_size |
|
|
|
self.gc_trans = nn.Linear(self.encoder_out_dim, 16 * 33, bias=True) |
|
|
|
self.cls = ErnieForMaskedLM(self.stellar_config).cls |
|
|
|
self.down_hidden_dim = 512 |
|
self.down_kernel_num = 128 |
|
self.alias_trans = nn.Linear(self.encoder_out_dim, self.down_hidden_dim, bias=True) |
|
self.alias_trans2 = torch.nn.Conv2d(1, self.down_kernel_num, (2, self.down_hidden_dim), stride=1, bias=True) |
|
self.alias_layer = nn.Linear(self.down_kernel_num * 5, 2 * 5, bias=True) |
|
|
|
self.aoi_trans = nn.Linear(self.encoder_out_dim, self.down_hidden_dim, bias=True) |
|
self.aoi_trans2 = torch.nn.Conv2d(1, self.down_kernel_num, (2, self.down_hidden_dim), stride=1, bias=True) |
|
self.aoi_layer = nn.Linear(self.down_kernel_num * 5, 2 * 5, bias=True) |
|
|
|
|
|
self.htc_trans = nn.Linear(self.encoder_out_dim, 5 * 100, bias=True) |
|
|
|
|
|
|
|
self.ner_model = NER_model(vocab_size=11) |
|
|
|
|
|
|
|
def forward(self, |
|
input_ids, |
|
attention_mask, |
|
token_type_ids, |
|
node_position_ids, |
|
spatial_pos, in_degree, out_degree, edge_type_matrix, edge_input, |
|
prov_city_mask: Optional[torch.Tensor] = None, |
|
sequence_len=6, |
|
labels: Optional[torch.Tensor] = None |
|
): |
|
""" |
|
:param input_ids: [sequence_len * batch_size, src_len] |
|
:param attention_mask: [sequence_len * batch_size, src_len] |
|
:param token_type_ids: [sequence_len * batch_size, src_len] |
|
:param sequence_len: int |
|
:param labels: |
|
:param is_eval: bool |
|
:return: |
|
""" |
|
batch_size_input = int(input_ids.shape[0] / sequence_len) |
|
|
|
embedding_output = self.embedding(input_ids=input_ids, token_type_ids=token_type_ids) |
|
|
|
stellar_predictions = self.stellar_model(embedding_output, |
|
input_ids=input_ids, |
|
token_type_ids=token_type_ids, |
|
attention_mask=attention_mask) |
|
last_hidden_state = stellar_predictions[0].contiguous().view(batch_size_input, sequence_len, -1, |
|
self.encoder_out_dim) |
|
pooler_output = stellar_predictions[1].contiguous().view(batch_size_input, sequence_len, self.encoder_out_dim) |
|
h_ = self.graphormer(pooler_output, spatial_pos, in_degree, out_degree, edge_type_matrix, edge_input, node_position_ids) |
|
h_ = h_.unsqueeze(2) |
|
new_hidden_state = torch.cat((h_, last_hidden_state[:, :, 1:, :]), dim=2) |
|
new_hidden_state = new_hidden_state.contiguous().view(batch_size_input * sequence_len, -1, self.encoder_out_dim) |
|
encoder_outputs = self.encoder(new_hidden_state, |
|
input_ids=input_ids, |
|
token_type_ids=token_type_ids, |
|
attention_mask=attention_mask) |
|
final_hidden_state = encoder_outputs[0] |
|
final_pooler_output = encoder_outputs[1].contiguous().view(batch_size_input, sequence_len, self.encoder_out_dim) |
|
prediction_scores = self.cls(final_hidden_state) |
|
|
|
gc_layer_out = self.gc_trans(final_pooler_output) |
|
gc_layer_out = gc_layer_out.contiguous().view(-1, 16) |
|
|
|
htc_layer_out = self.htc_trans(final_pooler_output) |
|
htc_layer_out = htc_layer_out.contiguous().view(-1, 100) |
|
|
|
|
|
|
|
if labels is not None: |
|
|
|
loss_fct = CrossEntropyLoss() |
|
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
return [gc_layer_out, masked_lm_loss, prediction_scores, htc_layer_out] |
|
|
|
if self.return_last_hidden_state: |
|
return final_pooler_output, pooler_output |
|
|
|
return gc_layer_out, final_pooler_output, final_hidden_state, prediction_scores, last_hidden_state, htc_layer_out |
|
|
|
def get_htc_code(self, htc_layer_out): |
|
htc_loss_fct = HTCLoss(device=self.device, reduction='mean') |
|
htc_pred = htc_loss_fct.get_htc_code(htc_layer_out) |
|
return htc_pred |
|
|
|
def decode_htc_code_2_chn(self, htc_pred): |
|
arr = htc_pred |
|
with open(remap_code_2_chn_file_path, 'rb') as fr: |
|
remap_code_2_chn = pickle.loads(fr.read()) |
|
return remap_code_2_chn['{:02d}{:02d}{:02d}{:01d}{:02d}'.format(arr[0], arr[1], arr[2], arr[3], arr[4])] |
|
|
|
|
|
def addr_standardize(self, address): |
|
tokenizer = BertTokenizer.from_pretrained('nghuyong/ernie-3.0-base-zh') |
|
encoded_input = tokenizer(address, return_tensors='pt', padding='max_length', |
|
truncation=True, |
|
max_length=60, |
|
add_special_tokens=True).to(self.device) |
|
word_ids = encoded_input['input_ids'] |
|
attention_mask = encoded_input['attention_mask'] |
|
|
|
length = len(word_ids) |
|
node_position_ids = torch.tensor(np.ones((length, 1), dtype=np.int64)).to(self.device) |
|
spatial_pos = torch.LongTensor(np.zeros((length, 1, 1), dtype=np.int64)).to(self.device) |
|
in_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device) |
|
out_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device) |
|
edge_type_matrix = torch.LongTensor(8*np.ones((length, 1, 1), dtype=np.int64)).to(self.device) |
|
edge_input = torch.LongTensor(8*np.ones((length, 1, 1, 1), dtype=np.int64)).to(self.device) |
|
|
|
logits = self.ner_model(**encoded_input, |
|
node_position_ids = node_position_ids, |
|
spatial_pos = spatial_pos, |
|
in_degree = in_degree, |
|
out_degree = out_degree, |
|
edge_type_matrix = edge_type_matrix, |
|
edge_input = edge_input,)[0] |
|
output = [] |
|
ner_labels = torch.argmax(logits, dim=-1) |
|
if len(address) == 1: |
|
ner_labels = ner_labels.unsqueeze(0) |
|
for i in range(len(address)): |
|
ner_label = ner_labels[i] |
|
word_id = word_ids[i] |
|
|
|
idx = torch.where(attention_mask[i]>0) |
|
ner_label = ner_label[idx][1:-1] |
|
word_id = word_id[idx][1:-1] |
|
|
|
idx1 = torch.where(ner_label != 0) |
|
ner_label = ner_label[idx1].tolist() |
|
word_id = word_id[idx1].tolist() |
|
|
|
if 8 in ner_label: |
|
idx2 = ''.join([str(i) for i in ner_label]).rfind('8') |
|
word_id.insert(idx2+1, 2770) |
|
ner_label.insert(idx2+1, 8) |
|
if 9 in ner_label: |
|
idx2 = ''.join([str(i) for i in ner_label]).rfind('9') |
|
word_id.insert(idx2+1, 269) |
|
word_id.insert(idx2+2, 183) |
|
ner_label.insert(idx2+1, 9) |
|
ner_label.insert(idx2+2, 9) |
|
if 10 in ner_label: |
|
idx2 = ''.join([str(i) for i in ner_label]).rfind('10') |
|
word_id.insert(idx2+1, 485) |
|
ner_label.insert(idx2+1, 10) |
|
|
|
output.append(tokenizer.decode(word_id).replace(' ', '')) |
|
|
|
return output |
|
|
|
|
|
def addr_entity(self, address): |
|
tokenizer = BertTokenizer.from_pretrained('nghuyong/ernie-3.0-base-zh') |
|
encoded_input = tokenizer(address, return_tensors='pt', padding='max_length', |
|
truncation=True, |
|
max_length=60, |
|
add_special_tokens=True).to(self.device) |
|
word_ids = encoded_input['input_ids'] |
|
attention_mask = encoded_input['attention_mask'] |
|
|
|
length = len(word_ids) |
|
node_position_ids = torch.tensor(np.ones((length, 1), dtype=np.int64)).to(self.device) |
|
spatial_pos = torch.LongTensor(np.zeros((length, 1, 1), dtype=np.int64)).to(self.device) |
|
in_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device) |
|
out_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device) |
|
edge_type_matrix = torch.LongTensor(8*np.ones((length, 1, 1), dtype=np.int64)).to(self.device) |
|
edge_input = torch.LongTensor(8*np.ones((length, 1, 1, 1), dtype=np.int64)).to(self.device) |
|
|
|
logits = self.ner_model(**encoded_input, |
|
node_position_ids = node_position_ids, |
|
spatial_pos = spatial_pos, |
|
in_degree = in_degree, |
|
out_degree = out_degree, |
|
edge_type_matrix = edge_type_matrix, |
|
edge_input = edge_input,)[0] |
|
|
|
ner_labels = torch.argmax(logits, dim=-1) |
|
if len(address) == 1: |
|
ner_labels = ner_labels.unsqueeze(0) |
|
|
|
output = [] |
|
tmp = {1:'省', 2:'市', 3:'区', 4:'街道/镇', 5:'道路', 6:'道路号', 7:'poi', 8:'楼栋号', 9:'单元号', 10:'门牌号'} |
|
for i in range(len(address)): |
|
ner_label = ner_labels[i] |
|
word_id = word_ids[i] |
|
idx = torch.where(attention_mask[i]>0) |
|
ner_label = ner_label[idx][1:-1] |
|
word_id = word_id[idx][1:-1] |
|
|
|
addr_dict = {} |
|
addr_dict = dict.fromkeys(tmp.values(),'无') |
|
for j in range(1,11): |
|
idx = torch.where(ner_label == j) |
|
addr_dict[tmp[j]] = ''.join(tokenizer.decode(word_id[idx]).replace(' ','')) |
|
|
|
output.append(deepcopy(addr_dict)) |
|
|
|
return output |
|
|
|
|
|
def house_info(self, address): |
|
tokenizer = BertTokenizer.from_pretrained('nghuyong/ernie-3.0-base-zh') |
|
encoded_input = tokenizer(address, return_tensors='pt', padding='max_length', |
|
truncation=True, |
|
max_length=60, |
|
add_special_tokens=True).to(self.device) |
|
word_ids = encoded_input['input_ids'] |
|
attention_mask = encoded_input['attention_mask'] |
|
|
|
length = len(word_ids) |
|
node_position_ids = torch.tensor(np.ones((length, 1), dtype=np.int64)).to(self.device) |
|
spatial_pos = torch.LongTensor(np.zeros((length, 1, 1), dtype=np.int64)).to(self.device) |
|
in_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device) |
|
out_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device) |
|
edge_type_matrix = torch.LongTensor(8*np.ones((length, 1, 1), dtype=np.int64)).to(self.device) |
|
edge_input = torch.LongTensor(8*np.ones((length, 1, 1, 1), dtype=np.int64)).to(self.device) |
|
|
|
logits = self.ner_model(**encoded_input, |
|
node_position_ids = node_position_ids, |
|
spatial_pos = spatial_pos, |
|
in_degree = in_degree, |
|
out_degree = out_degree, |
|
edge_type_matrix = edge_type_matrix, |
|
edge_input = edge_input,)[0] |
|
|
|
ner_labels = torch.argmax(logits, dim=-1) |
|
if len(address) == 1: |
|
ner_labels = ner_labels.unsqueeze(0) |
|
output = [] |
|
for i in range(len(address)): |
|
ner_label = ner_labels[i] |
|
word_id = word_ids[i] |
|
idx = torch.where(attention_mask[i]>0) |
|
ner_label = ner_label[idx][1:-1] |
|
word_id = word_id[idx][1:-1] |
|
|
|
building = [] |
|
unit = [] |
|
room = [] |
|
for j in range(len(ner_label)): |
|
if ner_label[j] == 8: |
|
building.append(word_id[j]) |
|
elif ner_label[j] == 9: |
|
unit.append(word_id[j]) |
|
elif ner_label[j] == 10: |
|
room.append(word_id[j]) |
|
|
|
output.append({'楼栋':tokenizer.decode(building).replace(' ',''), '单元':tokenizer.decode(unit).replace(' ',''), |
|
'门牌号': tokenizer.decode(room).replace(' ','')}) |
|
return output |
|
|
|
|
|
|
|
def addr_complet(self, address): |
|
tokenizer = BertTokenizer.from_pretrained('nghuyong/ernie-3.0-base-zh') |
|
encoded_input = tokenizer(address, return_tensors='pt', padding='max_length', |
|
truncation=True, |
|
max_length=60, |
|
add_special_tokens=True).to(self.device) |
|
word_ids = encoded_input['input_ids'] |
|
attention_mask = encoded_input['attention_mask'] |
|
|
|
length = len(word_ids) |
|
node_position_ids = torch.tensor(np.ones((length, 1), dtype=np.int64)).to(self.device) |
|
spatial_pos = torch.LongTensor(np.zeros((length, 1, 1), dtype=np.int64)).to(self.device) |
|
in_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device) |
|
out_degree = torch.LongTensor(np.ones((length, 1), dtype=np.int64)).to(self.device) |
|
edge_type_matrix = torch.LongTensor(8*np.ones((length, 1, 1), dtype=np.int64)).to(self.device) |
|
edge_input = torch.LongTensor(8*np.ones((length, 1, 1, 1), dtype=np.int64)).to(self.device) |
|
|
|
logits = self.ner_model(**encoded_input, |
|
node_position_ids = node_position_ids, |
|
spatial_pos = spatial_pos, |
|
in_degree = in_degree, |
|
out_degree = out_degree, |
|
edge_type_matrix = edge_type_matrix, |
|
edge_input = edge_input,)[0] |
|
|
|
ner_labels = torch.argmax(logits, dim=-1) |
|
if len(address) == 1: |
|
ner_labels = ner_labels.unsqueeze(0) |
|
if isinstance(address, list): |
|
address = address[0] |
|
|
|
|
|
g2ptl_model = AutoModel.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True) |
|
g2ptl_model.eval() |
|
g2ptl_output = g2ptl_model(**encoded_input) |
|
htc_layer_out = g2ptl_output.htc_layer_out |
|
arr = g2ptl_model.get_htc_code(htc_layer_out) |
|
htc_pred = '{:02d}{:02d}{:02d}{:01d}{:02d}'.format(arr[0], arr[1], arr[2], arr[3], arr[4]) |
|
with open('remap_code_2_chn_with_all_htc.pkl', 'rb') as fr: |
|
remap_code_2_chn = pickle.loads(fr.read()) |
|
|
|
try: |
|
htc_list = remap_code_2_chn[htc_pred][-1] |
|
except: |
|
return address |
|
|
|
|
|
if htc_list[0] in ['北京','上海','重庆','天津']: |
|
htc_list = htc_list[1:] |
|
htc_list.append('') |
|
|
|
idx = torch.where(attention_mask>0) |
|
ner_label = ner_labels[idx][1:-1].cpu().numpy().tolist() |
|
word_id = word_ids[idx][1:-1] |
|
|
|
for i in range(1,5): |
|
|
|
if i not in ner_label: |
|
if i == 1: |
|
address = htc_list[0] + address |
|
ner_label = [1] * len(htc_list[0]) + ner_label |
|
else : |
|
|
|
idx = 0 |
|
for j in range(len(ner_label)): |
|
if ner_label[j] > i: |
|
idx = j |
|
break |
|
address = address[:idx] + htc_list[i-1] + address[idx:] |
|
ner_label = ner_label[:idx] + [i] * len(htc_list[i-1]) + ner_label[idx:] |
|
|
|
return address |
|
|
|
|
|
def geolocate(self, address): |
|
g2ptl_model = AutoModel.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True) |
|
encoded_input = tokenizer(address, return_tensors='pt') |
|
|
|
g2ptl_model.eval() |
|
output = g2ptl_model(**encoded_input) |
|
geo_labels = torch.argmax(output.gc_layer_out, dim=-1) |
|
output = [s2_label_dict_remap[int(i)] for i in geo_labels] |
|
|
|
return 's2网格化结果:' + ''.join(output) |
|
|
|
|
|
def pickup_ETA(self, address): |
|
print('Users can get the address embeddings using model.encode(address) and feed them to your own ETA model.') |
|
|
|
|
|
def route_predict(self, route_data): |
|
print('Users can get the address embeddings using model.encode(address) and feed them to your own Route Prediction model.') |
|
|
|
|
|
def encode(self, address): |
|
tokenizer = AutoTokenizer.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True) |
|
g2ptl_model = AutoModel.from_pretrained('Cainiao-AI/G2PTL', trust_remote_code=True) |
|
encoded_input = tokenizer(address, return_tensors='pt', padding='max_length', |
|
truncation=True, |
|
max_length=60, |
|
add_special_tokens=True) |
|
g2ptl_model.eval() |
|
output = g2ptl_model(**encoded_input) |
|
|
|
return output.final_hidden_state |
|
|
|
def _reset_parameters(self): |
|
for p in self.parameters(): |
|
if p.dim() > 1: |
|
xavier_uniform_(p) |
|
|
|
def generate_square_subsequent_mask(self, sz): |
|
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) |
|
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) |
|
return mask |
|
|
|
def save_weights(self, path): |
|
torch.save(self.state_dict(), path) |
|
|
|
def load_weights(self, path): |
|
self.load_state_dict(torch.load(path, map_location=torch.device('cpu')), False) |
|
|
|
def set_pretrained_weights(self, path): |
|
pre_train_weights = torch.load(path, map_location=torch.device('cpu')) |
|
new_weights = dict() |
|
|
|
for layer in self.state_dict().keys(): |
|
if layer == 'embedding.position_ids': |
|
new_weights[layer] = pre_train_weights['ernie_model.embeddings.position_ids'] |
|
elif layer == 'embedding.word_embeddings.weight': |
|
new_weights[layer] = pre_train_weights['ernie_model.embeddings.word_embeddings.weight'] |
|
elif layer == 'embedding.position_embeddings.weight': |
|
new_weights[layer] = pre_train_weights['ernie_model.embeddings.position_embeddings.weight'] |
|
elif layer == 'embedding.token_type_embeddings.weight': |
|
new_weights[layer] = pre_train_weights['ernie_model.embeddings.token_type_embeddings.weight'] |
|
elif layer == 'embedding.task_type_embeddings.weight': |
|
new_weights[layer] = pre_train_weights['ernie_model.embeddings.task_type_embeddings.weight'] |
|
elif layer == 'embedding.LayerNorm.weight': |
|
new_weights[layer] = pre_train_weights['ernie_model.embeddings.LayerNorm.weight'] |
|
elif layer == 'embedding.LayerNorm.bias': |
|
new_weights[layer] = pre_train_weights['ernie_model.embeddings.LayerNorm.bias'] |
|
elif 'stellar_model' in layer: |
|
new_weights[layer] = pre_train_weights[layer.replace('stellar_model', 'ernie_model')] |
|
elif layer in pre_train_weights.keys(): |
|
new_weights[layer] = pre_train_weights[layer] |
|
else: |
|
new_weights[layer] = self.state_dict()[layer] |
|
|
|
self.load_state_dict(new_weights) |
|
|