from copy import deepcopy from torch.nn.init import xavier_uniform_ import torch.nn.functional as F from torch.nn import Parameter from torch.nn.init import normal_ import torch.utils.checkpoint from torch import Tensor, device from TAAS_utils import * from transformers.modeling_utils import ModuleUtilsMixin from fairseq import utils from fairseq.models import ( FairseqEncoder, FairseqEncoderModel, register_model, register_model_architecture, ) from fairseq.modules import ( LayerNorm, ) from fairseq.utils import safe_hasattr def init_params(module, n_layers): if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=0.02 / math.sqrt(n_layers)) if module.bias is not None: module.bias.data.zero_() if isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=0.02) @torch.jit.script def softmax_dropout(input, dropout_prob: float, is_training: bool): return F.dropout(F.softmax(input, -1), dropout_prob, is_training) class SelfMultiheadAttention(nn.Module): def __init__( self, embed_dim, num_heads, dropout=0.0, bias=True, scaling_factor=1, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert (self.head_dim * num_heads == self.embed_dim), "embed_dim must be divisible by num_heads" self.scaling = (self.head_dim * scaling_factor) ** -0.5 self.linear_q = nn.Linear(self.embed_dim, self.num_heads * self.head_dim) self.linear_k = nn.Linear(self.embed_dim, self.num_heads * self.head_dim) self.linear_v = nn.Linear(self.embed_dim, self.num_heads * self.head_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=bias) def forward( self, query: Tensor, attn_bias: Tensor = None, ) -> Tensor: n_graph, n_node, embed_dim = query.size() # q, k, v = self.in_proj(query).chunk(3, dim=-1) _shape = (-1, n_graph * self.num_heads, self.head_dim) q = self.linear_q(query).contiguous().view(n_graph, -1, self.num_heads, self.head_dim).transpose(1, 2) * self.scaling k = self.linear_k(query).contiguous().view(n_graph, -1, self.num_heads, self.head_dim).transpose(1, 2) v = self.linear_v(query).contiguous().view(n_graph, -1, self.num_heads, self.head_dim).transpose(1, 2) attn_weights = torch.matmul(q, k.transpose(2, 3)) attn_weights = attn_weights + attn_bias attn_probs = softmax_dropout(attn_weights, self.dropout, self.training) attn = torch.matmul(attn_probs, v) attn = attn.transpose(1, 2).contiguous().view(n_graph, -1, embed_dim) attn = self.out_proj(attn) return attn class Graphormer3DEncoderLayer(nn.Module): """ Implements a Graphormer-3D Encoder Layer. """ def __init__( self, embedding_dim: int = 768, ffn_embedding_dim: int = 3072, num_attention_heads: int = 8, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, ) -> None: super().__init__() # Initialize parameters self.embedding_dim = embedding_dim self.num_attention_heads = num_attention_heads self.attention_dropout = attention_dropout self.dropout = dropout self.activation_dropout = activation_dropout self.self_attn = SelfMultiheadAttention(self.embedding_dim, num_attention_heads, dropout=attention_dropout) # layer norm associated with the self attention layer self.self_attn_layer_norm = nn.LayerNorm(self.embedding_dim) self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim) self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim) self.final_layer_norm = nn.LayerNorm(self.embedding_dim) def forward(self, x: Tensor, attn_bias: Tensor = None): residual = x x = self.self_attn_layer_norm(x) x = self.self_attn(query=x, attn_bias=attn_bias) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x residual = x x = self.final_layer_norm(x) x = F.gelu(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x return x from fairseq.models import ( BaseFairseqModel, register_model, register_model_architecture, ) class Graphormer3D(BaseFairseqModel): def __init__(self): super().__init__() self.atom_types = 64 self.edge_types = 64 * 64 self.embed_dim = 768 self.layer_nums = 12 self.ffn_embed_dim = 768 self.blocks = 4 self.attention_heads = 48 self.input_dropout = 0.0 self.dropout = 0.1 self.attention_dropout = 0.1 self.activation_dropout = 0.0 self.node_loss_weight = 15 self.min_node_loss_weight = 1 self.eng_loss_weight = 1 self.num_kernel = 128 self.atom_encoder = nn.Embedding(self.atom_types, self.embed_dim, padding_idx=0) self.edge_embedding = nn.Embedding(32, self.attention_heads, padding_idx=0) self.input_dropout = nn.Dropout(0.1) self.layers = nn.ModuleList( [ Graphormer3DEncoderLayer( self.embed_dim, self.ffn_embed_dim, num_attention_heads=self.attention_heads, dropout=self.dropout, attention_dropout=self.attention_dropout, activation_dropout=self.activation_dropout, ) for _ in range(self.layer_nums) ] ) self.atom_encoder = nn.Embedding(512 * 9 + 1, self.embed_dim, padding_idx=0) self.edge_encoder = nn.Embedding(512 * 3 + 1, self.attention_heads, padding_idx=0) self.edge_type = 'multi_hop' if self.edge_type == 'multi_hop': self.edge_dis_encoder = nn.Embedding(16 * self.attention_heads * self.attention_heads, 1) self.spatial_pos_encoder = nn.Embedding(512, self.attention_heads, padding_idx=0) self.in_degree_encoder = nn.Embedding(512, self.embed_dim, padding_idx=0) self.out_degree_encoder = nn.Embedding(512, self.embed_dim, padding_idx=0) self.node_position_ids_encoder = nn.Embedding(10, self.embed_dim, padding_idx=0) self.final_ln: Callable[[Tensor], Tensor] = nn.LayerNorm(self.embed_dim) self.engergy_proj: Callable[[Tensor], Tensor] = NonLinear(self.embed_dim, 1) self.energe_agg_factor: Callable[[Tensor], Tensor] = nn.Embedding(3, 1) nn.init.normal_(self.energe_agg_factor.weight, 0, 0.01) self.graph_token = nn.Embedding(1, 768) self.graph_token_virtual_distance = nn.Embedding(1, self.attention_heads) K = self.num_kernel self.gbf: Callable[[Tensor, Tensor], Tensor] = GaussianLayer(K, self.edge_types) self.bias_proj: Callable[[Tensor], Tensor] = NonLinear(K, self.attention_heads) self.edge_proj: Callable[[Tensor], Tensor] = nn.Linear(K, self.embed_dim) self.node_proc: Callable[[Tensor, Tensor, Tensor], Tensor] = NodeTaskHead(self.embed_dim, self.attention_heads) def forward(self, node_feature, spatial_pos, in_degree, out_degree, edge_type_matrix, edge_input, node_position_ids): """ attn_bias:图中节点对之间的最短路径距离超过最短路径限制最大距离(spatial_pos_max)的位置为-inf,其余位置为0,形状为(n_graph, n_node+1, n_node+1) spatial_pos:图中节点对之间的最短路径长度,形状为(n_graph, n_node, n_node) x:图中节点的特征,形状为(n_graph, n_node, n_node_features) in_degree:图中节点的入度,形状为(n_graph, n_node) out_degree:图中节点的出度,形状为(n_graph, n_node) edge_input:图中节点对之间的最短路径(限制最短路径最大跳数为multi_hop_max_dist)上的边的特征,形状为(n_graph, n_node, n_node, multi_hop_max_dist, n_edge_features) attn_edge_type:图的边特征,形状为(n_graph, n_node, n_node, n_edge_features) :param batch_data: :return: """ # attn_bias, spatial_pos, x = batch_data.attn_bias, batch_data.spatial_pos, batch_data.x # in_degree, out_degree = batch_data.in_degree, batch_data.out_degree # edge_input, attn_edge_type = batch_data.edge_input, batch_data.attn_edge_type # graph_attn_bias attn_edge_type = self.edge_embedding(edge_type_matrix) edge_input = self.edge_embedding(edge_input)#.mean(-2) # 添加虚拟节点表示全图特征表示,之后按照图中正常节点处理 n_graph, n_node = node_feature.size()[:2] # graph_attn_bias = attn_bias.clone() # graph_attn_bias = graph_attn_bias.unsqueeze(1).repeat(1, self.attention_heads, 1, 1) # [n_graph, n_head, n_node+1, n_node+1] # spatial pos # 空间编码,节点之间最短路径长度对应的可学习标量 # [n_graph, n_node, n_node, n_head] -> [n_graph, n_head, n_node, n_node] spatial_pos_bias = self.spatial_pos_encoder(spatial_pos).permute(0, 3, 1, 2) # graph_attn_bias[:, :, 1:, 1:] = graph_attn_bias[:, :, 1:, 1:] + spatial_pos_bias # graph_attn_bias = spatial_pos_bias # reset spatial pos here # 所有节点都和虚拟节点直接有边相连,则所有节点和虚拟节点之间的最短路径长度为1 # t = self.graph_token_virtual_distance.weight.view(1, self.attention_heads, 1) # graph_attn_bias[:, :, 1:, 0] = graph_attn_bias[:, :, 1:, 0] + t # graph_attn_bias[:, :, 0, :] = graph_attn_bias[:, :, 0, :] + t # edge feature # 每个节点对沿最短路径计算边特征和可学习嵌入点积的平均值,并作为偏置项添加到注意模块中 if self.edge_type == 'multi_hop': spatial_pos_ = spatial_pos.clone() spatial_pos_[spatial_pos_ == 0] = 1 # set pad to 1 # set 1 to 1, x > 1 to x - 1 spatial_pos_ = torch.where(spatial_pos_ > 1, spatial_pos_ - 1, spatial_pos_) # if self.multi_hop_max_dist > 0: # spatial_pos_ = spatial_pos_.clamp(0, self.multi_hop_max_dist) # edge_input = edge_input[:, :, :, :self.multi_hop_max_dist, :] # [n_graph, n_node, n_node, max_dist, n_head] # edge_input = self.edge_encoder(edge_input).mean(-2) max_dist = edge_input.size(-2) edge_input_flat = edge_input.permute(3, 0, 1, 2, 4).reshape(max_dist, -1, self.attention_heads) edge_input_flat = torch.bmm(edge_input_flat, self.edge_dis_encoder.weight.reshape(-1, self.attention_heads, self.attention_heads)[:max_dist, :, :]) edge_input = edge_input_flat.reshape(max_dist, n_graph, n_node, n_node, self.attention_heads).permute(1, 2, 3, 0, 4) edge_input = (edge_input.sum(-2) / (spatial_pos_.float().unsqueeze(-1))).permute(0, 3, 1, 2) else: # [n_graph, n_node, n_node, n_head] -> [n_graph, n_head, n_node, n_node] edge_input = self.edge_encoder(attn_edge_type).mean(-2).permute(0, 3, 1, 2) # graph_attn_bias[:, :, 1:, 1:] = graph_attn_bias[:, :, 1:, 1:] + edge_input graph_attn_bias = spatial_pos_bias + edge_input # graph_attn_bias = graph_attn_bias + attn_bias.unsqueeze(1) # reset # graph_attn_bias = graph_attn_bias.contiguous().view(-1, 6, 6) # node feauture + graph token # node_feature = x # self.atom_encoder(x).sum(dim=-2) # [n_graph, n_node, n_hidden] # if self.flag and perturb is not None: # node_feature += perturb node_position_embedding = self.node_position_ids_encoder(node_position_ids) node_position_embedding = node_position_embedding.contiguous().view(n_graph, n_node, self.embed_dim) # print(node_position_embedding.shape) # 根据节点的入度、出度为每个节点分配两个实值嵌入向量,添加到节点特征中作为输入 node_feature = node_feature + self.in_degree_encoder(in_degree) + \ self.out_degree_encoder(out_degree) + node_position_embedding # print(node_feature.shape) # graph_token_feature = self.graph_token.weight.unsqueeze(0).repeat(n_graph, 1, 1) # graph_node_feature = torch.cat([graph_token_feature, node_feature], dim=1) # transfomrer encoder output = self.input_dropout(node_feature)#.permute(1, 0, 2) for enc_layer in self.layers: output = enc_layer(output, graph_attn_bias) output = self.final_ln(output) # output part # 整个图的表示是最后一层虚拟节点的特征 # if self.dataset_name == 'PCQM4M-LSC': # # get whole graph rep # output = self.out_proj(output[:, 0, :]) # else: # output = self.downstream_out_proj(output[:, 0, :]) # print(output.shape) return output @torch.jit.script def gaussian(x, mean, std): pi = 3.14159 a = (2 * pi) ** 0.5 return torch.exp(-0.5 * (((x - mean) / std) ** 2)) / (a * std) class GaussianLayer(nn.Module): def __init__(self, K=128, edge_types=1024): super().__init__() self.K = K self.means = nn.Embedding(1, K) self.stds = nn.Embedding(1, K) self.mul = nn.Embedding(edge_types, 1) self.bias = nn.Embedding(edge_types, 1) nn.init.uniform_(self.means.weight, 0, 3) nn.init.uniform_(self.stds.weight, 0, 3) nn.init.constant_(self.bias.weight, 0) nn.init.constant_(self.mul.weight, 1) def forward(self, x, edge_types): mul = self.mul(edge_types) bias = self.bias(edge_types) x = mul * x.unsqueeze(-1) + bias x = x.expand(-1, -1, -1, self.K) mean = self.means.weight.float().view(-1) std = self.stds.weight.float().view(-1).abs() + 1e-5 return gaussian(x.float(), mean, std).type_as(self.means.weight) class RBF(nn.Module): def __init__(self, K, edge_types): super().__init__() self.K = K self.means = nn.parameter.Parameter(torch.empty(K)) self.temps = nn.parameter.Parameter(torch.empty(K)) self.mul: Callable[..., Tensor] = nn.Embedding(edge_types, 1) self.bias: Callable[..., Tensor] = nn.Embedding(edge_types, 1) nn.init.uniform_(self.means, 0, 3) nn.init.uniform_(self.temps, 0.1, 10) nn.init.constant_(self.bias.weight, 0) nn.init.constant_(self.mul.weight, 1) def forward(self, x: Tensor, edge_types): mul = self.mul(edge_types) bias = self.bias(edge_types) x = mul * x.unsqueeze(-1) + bias mean = self.means.float() temp = self.temps.float().abs() return ((x - mean).square() * (-temp)).exp().type_as(self.means) class NonLinear(nn.Module): def __init__(self, input, output_size, hidden=None): super(NonLinear, self).__init__() if hidden is None: hidden = input self.layer1 = nn.Linear(input, hidden) self.layer2 = nn.Linear(hidden, output_size) def forward(self, x): x = F.gelu(self.layer1(x)) x = self.layer2(x) return x class NodeTaskHead(nn.Module): def __init__( self, embed_dim: int, num_heads: int, ): super().__init__() self.embed_dim = embed_dim self.q_proj: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, embed_dim) self.k_proj: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, embed_dim) self.v_proj: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, embed_dim) self.num_heads = num_heads self.scaling = (embed_dim // num_heads) ** -0.5 self.force_proj1: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, 1) self.force_proj2: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, 1) self.force_proj3: Callable[[Tensor], Tensor] = nn.Linear(embed_dim, 1) def forward( self, query: Tensor, attn_bias: Tensor, delta_pos: Tensor, ) -> Tensor: bsz, n_node, _ = query.size() q = (self.q_proj(query).view(bsz, n_node, self.num_heads, -1).transpose(1, 2) * self.scaling) k = self.k_proj(query).view(bsz, n_node, self.num_heads, -1).transpose(1, 2) v = self.v_proj(query).view(bsz, n_node, self.num_heads, -1).transpose(1, 2) attn = q @ k.transpose(-1, -2) # [bsz, head, n, n] attn_probs = softmax_dropout(attn.view(-1, n_node, n_node) + attn_bias, 0.1, self.training).view(bsz, self.num_heads, n_node, n_node) rot_attn_probs = attn_probs.unsqueeze(-1) * delta_pos.unsqueeze(1).type_as(attn_probs) # [bsz, head, n, n, 3] rot_attn_probs = rot_attn_probs.permute(0, 1, 4, 2, 3) x = rot_attn_probs @ v.unsqueeze(2) # [bsz, head , 3, n, d] x = x.permute(0, 3, 2, 1, 4).contiguous().view(bsz, n_node, 3, -1) f1 = self.force_proj1(x[:, :, 0, :]).view(bsz, n_node, 1) f2 = self.force_proj2(x[:, :, 1, :]).view(bsz, n_node, 1) f3 = self.force_proj3(x[:, :, 2, :]).view(bsz, n_node, 1) cur_force = torch.cat([f1, f2, f3], dim=-1).float() return cur_force