#!/usr/bin/env python # -*- coding: utf-8 -*- from transformers.configuration_utils import PretrainedConfig class TAASConfig(PretrainedConfig): model_type = "TAAS" def __init__( self, hidd_dropout=0.1, intermediate_size=3072, initialize_range=0.02, max_pos_embeddings=2048, hidd_act="gelu", attention_dropout=0.1, using_task_id=True, vocabulary_size=40000, hidd_size=768, num_hidd_layers=12, layer_norm_rate=1e-05, num_atten_heads=12, pad_token_id=0, task_vocab_size=3, classifier_drop=None, pos_embedding="absolute", use_cache=True, vocab_size=4, **kwargs ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocabulary_size self.max_position_embeddings = max_pos_embeddings self.type_vocab_size = vocab_size self.use_task_id = using_task_id self.layer_norm_eps = layer_norm_rate self.position_embedding_type = pos_embedding self.num_attention_heads = num_atten_heads self.hidden_size = hidd_size self.attention_probs_dropout_prob = attention_dropout self.initializer_range = initialize_range self.hidden_act = hidd_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidd_dropout self.use_cache = use_cache self.classifier_dropout = classifier_drop self.num_hidden_layers = num_hidd_layers self.task_type_vocab_size = task_vocab_size