#!/usr/bin/env python # -*- coding: utf-8 -*- import operator import pickle import numpy as np import pandas as pd s2_label_dict = { '0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9, 'a': 10, 'b': 11, 'c': 12, 'd': 13, 'e': 14, 'f': 15 } s2_label_decode_dict = {v: k for k, v in s2_label_dict.items()} s2_weights = [0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.0325, 0.0325, 0.0325, 0.035, 0.035, 0.035, 0.0375, 0.0375, 0.0375, 0.04, 0.04, 0.04, 0.0425, 0.0425, 0.0425, 0.045, 0.045, 0.0475, 0.025, 0.025, 0.025, 0.0, 0.0, 0.0] def generate_s2_index(s2_label): result = [0 for _ in range(33)] for i, char_ in enumerate(s2_label): result[i] = s2_label_dict[char_] return result def decode_s2(x): result = [] for i in x: result.append(s2_label_decode_dict[i]) return ''.join(result) def sample_csv2pkl(csv_path, pkl_path): # df = pd.read_csv('/Users/liujianlin/odps_clt_release_64/bin/addr6node_small1.csv', sep='^', encoding="utf_8_sig") df = pd.read_csv(csv_path, sep='^', encoding="utf_8_sig") # print(df) data = [] for index, row in df.iterrows(): node_s = [] label = [] node1 = [row['node_t1'], row['poi_address_mask1'], row['node1'], generate_s2_index(row['node1'])] node2 = [row['node_t2'], row['poi_address_mask2'], row['node2'], generate_s2_index(row['node2'])] node3 = [row['node_t3'], row['poi_address_mask3'], row['node3'], generate_s2_index(row['node3'])] node4 = [row['node_t4'], row['poi_address_mask4'], row['node4'], generate_s2_index(row['node4'])] node5 = [row['node_t5'], row['poi_address_mask5'], row['node5'], generate_s2_index(row['node5'])] node6 = [row['node_t6'], row['poi_address_mask6'], row['node6'], generate_s2_index(row['node6'])] label.extend(node1[3]) label.extend(node2[3]) label.extend(node3[3]) label.extend(node4[3]) label.extend(node5[3]) label.extend(node6[3]) node1.append(label) node2.append(label) node3.append(label) node4.append(label) node5.append(label) node6.append(label) node_s.append(node1) node_s.append(node2) node_s.append(node3) node_s.append(node4) node_s.append(node5) node_s.append(node6) data.append(node_s) # print(data) with open(pkl_path,'wb') as f: pickle.dump(data,f) def calculate_multi_s2_acc(predicted_s2, y): acc_cnt = np.array([0, 0, 0, 0, 0, 0, 0]) y = y.view(-1, 33).tolist() predicted = predicted_s2.view(-1, 33).tolist() # print(y.shape, predicted.shape) for index, s2 in enumerate(y): for c, i in enumerate(range(12, 33, 3)): y_l10 = y[index][12:i+3] p_l10 = predicted[index][12:i+3] # print(y_l10, p_l10, operator.eq(y_l10, p_l10)) if operator.eq(y_l10, p_l10): acc_cnt[c] += 1 # print('==='*20) # print(acc_cnt) return acc_cnt def calculate_multi_s2_acc_batch(predicted_s2, y, sequence_len = 6): acc_cnt = np.array([0, 0, 0, 0, 0, 0, 0]) y = y.view(-1, sequence_len, 33).tolist() predicted = predicted_s2.view(-1, sequence_len, 33).tolist() # print(y.shape, predicted.shape) batch_size = len(y) for batch_i in range(batch_size): for index, s2 in enumerate(y[batch_i]): for c, i in enumerate(range(12, 33, 3)): y_l10 = y[batch_i][index][12:i+3] p_l10 = predicted[batch_i][index][12:i+3] # print(y_l10, p_l10, operator.eq(y_l10, p_l10)) if operator.eq(y_l10, p_l10): acc_cnt[c] += 1 # print('==='*20) # print(acc_cnt) return acc_cnt def calculate_alias_acc(predicted, y): tp, fp, fn, tn = 0, 0, 0, 0 acc = 0 for index, label in enumerate(y): if int(label) == int(predicted[index]): acc += 1 if int(label) == 1: fn += 1 if int(predicted[index]) == 1: tp += 1 if fn == 0: precision = 0 else: precision = tp / fn * 100 return tp, fn, acc def calculate_aoi_acc(predicted, y): tp, fp, fn, tn = 0, 0, 0, 0 acc = 0 for index, label in enumerate(y): if int(label) == int(predicted[index]): acc += 1 if int(label) == 0: fn += 1 if int(predicted[index]) == 0: tp += 1 if fn == 0: precision = 0 else: precision = tp / fn * 100 return tp, fn, acc