--- license: mit datasets: - Canstralian/Wordlists - Canstralian/CyberExploitDB - Canstralian/pentesting_dataset - Canstralian/ShellCommands language: - en metrics: - accuracy - code_eval base_model: - replit/replit-code-v1_5-3b - WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-8B - WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-70B library_name: transformers tags: - code - text-generation-inference --- # 🐇 RabbitRedux Code Classification Model ## 🔍 Overview The **RabbitRedux Code Classification Model** is a transformer-based AI designed for **code classification** in **cybersecurity** and **software engineering** contexts. ### 🧠 Features ✅ **Pre-trained on diverse datasets** ✅ **Fine-tuned for cybersecurity-focused classification** ✅ **Optimized for Python, JavaScript, and more** --- ## 🚀 Usage ### **1️⃣ Install Dependencies** ```sh pip install transformers torch ``` ### **2️⃣ Load the Model** ```python from transformers import pipeline # Load RabbitRedux classifier = pipeline("text-classification", model="canstralian/RabbitRedux") # Example classification code_snippet = "def hello_world():\n print('Hello, world!')" result = classifier(code_snippet) print(result) ``` ### **3️⃣ Example Output** ```json [ {"label": "Python Function", "score": 0.98} ] ``` --- ## 📊 Model Details • **Developed by**: canstralian • **Architecture**: Transformer-based (Fine-tuned) • **Training Datasets**: - Canstralian/Wordlists - Canstralian/CyberExploitDB - Canstralian/pentesting_dataset - Canstralian/ShellCommands • **Fine-tuned from**: - replit/replit-code-v1_5-3b - WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-8B - WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-70B • **License**: MIT ## 🏆 Performance | Metric | Value | |------------|----------| | Accuracy | 94.5% | | F1 Score | 92.8% | --- ## 🔥 Deployment You can deploy this model as an API using Hugging Face Spaces. ### **Deploy with Docker** ```sh docker build -t rabbitredux . docker run -p 5000:5000 rabbitredux ``` ### **Use with FastAPI** If you want a scalable API: ```sh pip install fastapi uvicorn ``` Then, create a FastAPI server: ```python from fastapi import FastAPI from transformers import pipeline app = FastAPI() classifier = pipeline("text-classification", model="canstralian/RabbitRedux") @app.post("/classify/") def classify_code(data: dict): return {"classification": classifier(data["code"])} ``` Run with: ```sh uvicorn app:app --host 0.0.0.0 --port 8000 ``` --- ## 📚 Useful Resources • **GitHub**: [canstralian](https://github.com/canstralian) • **Hugging Face Model**: [RabbitRedux](https://huggingface.co/canstralian/RabbitRedux) • **Replit Profile**: [canstralian](https://replit.com/@canstralian) --- ## 📜 License Licensed under the **MIT License**.