|
from transformers import pipeline |
|
|
|
|
|
def load_model(model_name): |
|
try: |
|
|
|
model = pipeline("text-classification", model=model_name) |
|
return model |
|
except Exception as e: |
|
print(f"Error loading model: {e}") |
|
return None |
|
|
|
|
|
def run_inference(user_input, selected_model, prompt=None): |
|
model = load_model(selected_model) |
|
if model: |
|
|
|
if prompt: |
|
input_text = f"{prompt}\n{user_input}" |
|
else: |
|
input_text = user_input |
|
|
|
try: |
|
|
|
result = model(input_text) |
|
|
|
|
|
return result[0]['label'] if 'label' in result[0] else "Error: No label in output" |
|
except Exception as e: |
|
return f"Error during inference: {e}" |
|
else: |
|
return f"Error: Model '{selected_model}' failed to load." |
|
|
|
|
|
selected_model = "Canstralian/CySec_Known_Exploit_Analyzer" |
|
user_input = "Sample exploit description" |
|
prompt = "Classify the following cybersecurity exploit:" |
|
|
|
|
|
result = run_inference(user_input, selected_model, prompt) |
|
print(f"Inference Result: {result}") |
|
|