refactor: move script to file
Browse files- README.md +8 -53
- apply_delta.py +49 -0
README.md
CHANGED
@@ -17,63 +17,18 @@ datasets:
|
|
17 |
|
18 |
StableVicuna-13B is a [Vicuna-13B](https://vicuna.lmsys.org/) model fine-tuned using reinforcement learning from human feedback (RLHF) via Proximal Policy Optimization (PPO) on various conversational and instructional datasets.
|
19 |
|
20 |
-
### Apply Delta
|
21 |
|
22 |
-
|
23 |
-
"""
|
24 |
-
Usage:
|
25 |
-
python3 apply_delta.py --base /path/to/model_weights/llama-13b --target stable-vicuna-13b --delta pvduy/stable-vicuna-13b-delta
|
26 |
-
"""
|
27 |
-
import argparse
|
28 |
-
|
29 |
-
import torch
|
30 |
-
from tqdm import tqdm
|
31 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
32 |
-
|
33 |
-
|
34 |
-
def apply_delta(base_model_path, target_model_path, delta_path):
|
35 |
-
print("Loading base model")
|
36 |
-
base = AutoModelForCausalLM.from_pretrained(
|
37 |
-
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
38 |
-
|
39 |
-
print("Loading delta")
|
40 |
-
delta = AutoModelForCausalLM.from_pretrained(delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
41 |
-
delta_tokenizer = AutoTokenizer.from_pretrained(delta_path)
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
num_new_tokens = base_tokenizer.add_special_tokens(dict(pad_token=DEFAULT_PAD_TOKEN))
|
46 |
-
|
47 |
-
base.resize_token_embeddings(len(base_tokenizer))
|
48 |
-
input_embeddings = base.get_input_embeddings().weight.data
|
49 |
-
output_embeddings = base.get_output_embeddings().weight.data
|
50 |
-
input_embeddings[-num_new_tokens:] = 0
|
51 |
-
output_embeddings[-num_new_tokens:] = 0
|
52 |
-
|
53 |
-
print("Applying delta")
|
54 |
-
for name, param in tqdm(base.state_dict().items(), desc="Applying delta"):
|
55 |
-
assert name in delta.state_dict()
|
56 |
-
param.data += delta.state_dict()[name]
|
57 |
-
|
58 |
-
print("Saving target model")
|
59 |
-
base.save_pretrained(target_model_path)
|
60 |
-
delta_tokenizer.save_pretrained(target_model_path)
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
parser = argparse.ArgumentParser()
|
65 |
-
parser.add_argument("--base-model-path", type=str, required=True)
|
66 |
-
parser.add_argument("--target-model-path", type=str, required=True)
|
67 |
-
parser.add_argument("--delta-path", type=str, required=True)
|
68 |
-
|
69 |
-
args = parser.parse_args()
|
70 |
-
|
71 |
-
apply_delta(args.base_model_path, args.target_model_path, args.delta_path)
|
72 |
```
|
73 |
|
|
|
74 |
## Usage
|
75 |
|
76 |
-
|
77 |
|
78 |
```python
|
79 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
@@ -118,14 +73,14 @@ print(tokenizer.decode(tokens[0], skip_special_tokens=True))
|
|
118 |
|
119 |
### Training Dataset
|
120 |
|
121 |
-
|
122 |
[GPT4All Prompt Generations](https://huggingface.co/datasets/nomic-ai/gpt4all_prompt_generations), a dataset of 400k prompts and responses generated by GPT-4; and [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca), a dataset of 52,000 instructions and demonstrations generated by OpenAI's text-davinci-003 engine.
|
123 |
|
124 |
The reward model used during RLHF was also trained on [OpenAssistant Conversations Dataset (OASST1)](https://huggingface.co/datasets/OpenAssistant/oasst1) along with two other datasets: [Anthropic HH-RLHF](https://huggingface.co/datasets/Anthropic/hh-rlhf), a dataset of preferences about AI assistant helpfulness and harmlessness; and [Stanford Human Preferences Dataset](https://huggingface.co/datasets/stanfordnlp/SHP) a dataset of 385K collective human preferences over responses to questions/instructions in 18 different subject areas, from cooking to legal advice.
|
125 |
|
126 |
### Training Procedure
|
127 |
|
128 |
-
`stabilityai/sstable-vicuna-13b` was trained using PPO as implemented in [`trlX`](https://github.com/CarperAI/trlx/blob/main/trlx/trainer/accelerate_ppo_trainer.py) with the following configuration:
|
129 |
|
130 |
| Hyperparameter | Value |
|
131 |
|-------------------|---------|
|
|
|
17 |
|
18 |
StableVicuna-13B is a [Vicuna-13B](https://vicuna.lmsys.org/) model fine-tuned using reinforcement learning from human feedback (RLHF) via Proximal Policy Optimization (PPO) on various conversational and instructional datasets.
|
19 |
|
20 |
+
### Apply Delta Weights
|
21 |
|
22 |
+
StableVicuna-13B cannot be used from the `stability/stable-vicuna-13b-delta` weights alone. To obtain the correct model, one must add back the difference between LLaMA 13B and `stability/stable-vicuna-13b-delta` weights. We provide the [`apply_delta.py`](https://huggingface.co/CarperAI/stable-vicuna-13b-delta/raw/main/apply_delta.py) script to automate the conversion, which you can run as:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
```sh
|
25 |
+
python3 apply_delta.py --base /path/to/model_weights/llama-13b --target stable-vicuna-13b --delta stabilityai/stable-vicuna-13b-delta
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
```
|
27 |
|
28 |
+
|
29 |
## Usage
|
30 |
|
31 |
+
Once the delta weights are applied, get started chatting with the model by using the [`transformers`](https://huggingface.co/docs/transformers) library:
|
32 |
|
33 |
```python
|
34 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
73 |
|
74 |
### Training Dataset
|
75 |
|
76 |
+
StableVicuna-13B is fine-tuned on a mix of three datasets. [OpenAssistant Conversations Dataset (OASST1)](https://huggingface.co/datasets/OpenAssistant/oasst1), a human-generated, human-annotated assistant-style conversation corpus consisting of 161,443 messages distributed across 66,497 conversation trees, in 35 different languages;
|
77 |
[GPT4All Prompt Generations](https://huggingface.co/datasets/nomic-ai/gpt4all_prompt_generations), a dataset of 400k prompts and responses generated by GPT-4; and [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca), a dataset of 52,000 instructions and demonstrations generated by OpenAI's text-davinci-003 engine.
|
78 |
|
79 |
The reward model used during RLHF was also trained on [OpenAssistant Conversations Dataset (OASST1)](https://huggingface.co/datasets/OpenAssistant/oasst1) along with two other datasets: [Anthropic HH-RLHF](https://huggingface.co/datasets/Anthropic/hh-rlhf), a dataset of preferences about AI assistant helpfulness and harmlessness; and [Stanford Human Preferences Dataset](https://huggingface.co/datasets/stanfordnlp/SHP) a dataset of 385K collective human preferences over responses to questions/instructions in 18 different subject areas, from cooking to legal advice.
|
80 |
|
81 |
### Training Procedure
|
82 |
|
83 |
+
`stabilityai/sstable-vicuna-13b-delta` was trained using PPO as implemented in [`trlX`](https://github.com/CarperAI/trlx/blob/main/trlx/trainer/accelerate_ppo_trainer.py) with the following configuration:
|
84 |
|
85 |
| Hyperparameter | Value |
|
86 |
|-------------------|---------|
|
apply_delta.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Usage:
|
3 |
+
python3 apply_delta.py --base /path/to/model_weights/llama-13b --target stable-vicuna-13b --delta pvduy/stable-vicuna-13b-delta
|
4 |
+
"""
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from tqdm import tqdm
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
+
|
11 |
+
|
12 |
+
def apply_delta(base_model_path, target_model_path, delta_path):
|
13 |
+
print("Loading base model")
|
14 |
+
base = AutoModelForCausalLM.from_pretrained(
|
15 |
+
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
16 |
+
|
17 |
+
print("Loading delta")
|
18 |
+
delta = AutoModelForCausalLM.from_pretrained(delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
19 |
+
delta_tokenizer = AutoTokenizer.from_pretrained(delta_path)
|
20 |
+
|
21 |
+
DEFAULT_PAD_TOKEN = "[PAD]"
|
22 |
+
base_tokenizer = AutoTokenizer.from_pretrained(base_model_path, use_fast=False)
|
23 |
+
num_new_tokens = base_tokenizer.add_special_tokens(dict(pad_token=DEFAULT_PAD_TOKEN))
|
24 |
+
|
25 |
+
base.resize_token_embeddings(len(base_tokenizer))
|
26 |
+
input_embeddings = base.get_input_embeddings().weight.data
|
27 |
+
output_embeddings = base.get_output_embeddings().weight.data
|
28 |
+
input_embeddings[-num_new_tokens:] = 0
|
29 |
+
output_embeddings[-num_new_tokens:] = 0
|
30 |
+
|
31 |
+
print("Applying delta")
|
32 |
+
for name, param in tqdm(base.state_dict().items(), desc="Applying delta"):
|
33 |
+
assert name in delta.state_dict()
|
34 |
+
param.data += delta.state_dict()[name]
|
35 |
+
|
36 |
+
print("Saving target model")
|
37 |
+
base.save_pretrained(target_model_path)
|
38 |
+
delta_tokenizer.save_pretrained(target_model_path)
|
39 |
+
|
40 |
+
|
41 |
+
if __name__ == "__main__":
|
42 |
+
parser = argparse.ArgumentParser()
|
43 |
+
parser.add_argument("--base-model-path", type=str, required=True)
|
44 |
+
parser.add_argument("--target-model-path", type=str, required=True)
|
45 |
+
parser.add_argument("--delta-path", type=str, required=True)
|
46 |
+
|
47 |
+
args = parser.parse_args()
|
48 |
+
|
49 |
+
apply_delta(args.base_model_path, args.target_model_path, args.delta_path)
|