metadata
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-large
tags:
- generated_from_trainer
model-index:
- name: videomae-large_ActionRecognition
results: []
videomae-large_ActionRecognition
This model is a fine-tuned version of MCG-NJU/videomae-large on an unknown dataset. It achieves the following results on the evaluation set:
- eval_loss: 0.0503
- eval_confusion_matrix: {'confusion_matrix': array([[14, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 12, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 17, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 23, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 5, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 1, 32, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 10, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 12, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 7, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 22]])}
- eval_runtime: 27.1769
- eval_samples_per_second: 5.703
- eval_steps_per_second: 2.87
- step: 0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 900
Framework versions
- Transformers 4.39.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2